The Silent Phase of Alzheimer’s Disease: From Brain States to Homeostatic Failur...
The Silent Phase of Alzheimer’s Disease: From Brain States to Homeostatic Failures
Neuronal circuits must balance stability and plasticity. How this balance is compromised in brain disorders remains one of the most fundamental questions in neuroscience. Pioneering studies in the field established that homeostati...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MacroStability
Stability and dynamics at different spatial scales From phy...
2M€
Cerrado
PGC2018-094307-B-I00
ALTERACIONES CELULARES Y SINAPTICAS DE LA CORTEZA CEREBRAL E...
303K€
Cerrado
PCI2021-122069-2A
INTERPRETING MEG BIOMARKERS OF ALZHEIMER S PROGRESSION WITH...
248K€
Cerrado
BFU2012-39958
MECANISMOS DE LA MEMORIA: DE LA PLASTICIDAD SINAPTICA A LA D...
117K€
Cerrado
NeurogenesisCode
Deciphering the role of adult neurogenesis in hippocampal me...
2M€
Cerrado
Información proyecto DormantAD
Duración del proyecto: 59 meses
Fecha Inicio: 2023-10-01
Fecha Fin: 2028-09-30
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Neuronal circuits must balance stability and plasticity. How this balance is compromised in brain disorders remains one of the most fundamental questions in neuroscience. Pioneering studies in the field established that homeostatic mechanisms stabilize the function of a system at a set-point level of activity. Recently, we have identified bona fide mitochondrial regulator of activity set points and provided support to our standing hypothesis that homeostatic failures destabilize network activity in Alzheimer's disease (AD). However, we have just scratched the surface of the mechanisms stabilizing activity set points in vivo. I propose a conceptual and experimental framework to identify the cellular-molecular and circuit-wide in vivo mechanisms underlying stability of hippocampal circuits across distinct brain states and stability-plasticity balance. Using a wide range of optical, electrophysiological, computational and molecular tools, we will explore homeostatic regulation of activity in hippocampal circuitry, a crucial substrate for memory formation, and its relation to AD. First, we will establish governing principles of homeostatic regulation in physiological context of sleep and learning. Next, we will explore the underlying molecular drivers of homeostatic regulation. Finally, we will test the causal relationship between dyshomeostasis of activity in hippocampal circuits, sleep disturbances and cognitive decline in AD models. To target these questions, we will utilize the basic concepts of control theory and an integrative approach which spans brain-state, neural circuit, synaptic and molecular levels. We believe that this understanding is an essential step to uncover the principle basis underlying the transition from a presymptomatic disease stage to clinically evident cognitive AD impairments. The proposed research will elucidate fundamental principles of neuronal function and reveal conceptually novel insights into how to maintain AD in a dormant state.