The role of symbiont diversity in resilience to temperature fluctuations.
Beneficial microbes are essential for many animals and mutualistic interactions must be able to withstand environmental changes such as temperature fluctuations. However, with changing ocean temperatures induced by climate change,...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTM2013-48292-C3-2-R
ECOLOGIA DE MICROORGANISMOS MARINOS: BIODIVERSIDAD, GENOMICA...
115K€
Cerrado
CTM2010-17755
PEQUEÑOS ORGANISMOS CON GRANDES IMPACTOS: DIVERSIDAD, DINAMI...
167K€
Cerrado
HOLOSPONGIA
Sponge diseases under climate change: a multi-omics approach...
212K€
Cerrado
CoralCellSeq
Genomic and single-cell approaches to establish the molecula...
181K€
Cerrado
IMMSYM
Mechanistic insight into immune control of cnidarian endosym...
174K€
Cerrado
PID2019-105775RB-I00
EVOLUCION Y GENOMICA POBLACIONAL DE MICROORGANISMOS EN UN OC...
192K€
Cerrado
Información proyecto SymFlux
Duración del proyecto: 28 meses
Fecha Inicio: 2024-04-17
Fecha Fin: 2026-08-31
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
212K€
Descripción del proyecto
Beneficial microbes are essential for many animals and mutualistic interactions must be able to withstand environmental changes such as temperature fluctuations. However, with changing ocean temperatures induced by climate change, it is unclear whether symbioses will be able to adapt, leaving marine organisms at risk. Therefore, this proposal will characterize how bacterial symbionts respond to changing temperatures and identify whether microbes can increase symbiotic resiliency to temperature stress. To pursue this topic, the symbiosis between the squid Sepiola affinis and its symbionts (V. fischeri and V. logei) will be used. The project uses a unique squid husbandry facility to pursue three main objectives. The first objective will characterize initial and persistent colonization in the S. affinis light organ. Using confocal microscopy and genetic labelling, strain behaviors during colonization will be described. The second objective will examine how temperature affects colonization. The third objective will screen Vibrio spp. for growth under temperature fluctuations. RNA sequencing and metabolomics will be used to identify molecular mechanisms underlying resilience to temperature fluctuations. Finally, genetic modification and both in-vitro and in-vivo growth assays will test whether molecular candidates promote temperature resilience. The project will have a two-way transfer of knowledge, with the researcher providing knowledge of Vibrio spp. and bacterial genetics with the host institution providing bioinformatics and small molecule analysis. The SymFlux project will position S. affinis as a model for symbiosis research in Europe as well as contribute knowledge of how symbioses can adapt to climate change.