The role of chromatin in the long term adaptation of plants to abiotic stress
Abiotic stress is a major threat to global crop yields and this problem is likely to be exacerbated in the future. Therefore, it is very important to engineer crop plants with improved stress tolerance. A large body of research ha...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TRANS-EPIGEN
Transgenerational epigenetic regulation of heat stress respo...
234K€
Cerrado
PID2020-114419RB-I00
MECANISMOS MOLECULARES IMPLICADOS EN LA PERCEPCION Y RESPUES...
260K€
Cerrado
BFU2011-24208
PAPEL DE LA HMG-COA REDUCTASA EN LA RESPUESTA DE PLANTAS A E...
48K€
Cerrado
BFU2012-39527
INTERACCION ENTRE EL ESTADO REDOX DE LAS CELULAS Y FITOHORMO...
94K€
Cerrado
AS-ABA
Alternative splicing and SR proteins in ABA mediated plant s...
149K€
Cerrado
PCIN-2013-014-C02-01
CONTROL DE LA RESPUESTA A ESTRES ABIOTICO POR LAS DELLAS Y C...
110K€
Cerrado
Información proyecto CHROMADAPT
Duración del proyecto: 66 meses
Fecha Inicio: 2017-04-05
Fecha Fin: 2022-10-31
Líder del proyecto
UNIVERSITAET POTSDAM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Abiotic stress is a major threat to global crop yields and this problem is likely to be exacerbated in the future. Therefore, it is very important to engineer crop plants with improved stress tolerance. A large body of research has focussed on the immediate stress responses. However, in nature stress is frequently chronic or recurring, suggesting that temporal dynamics are an important, but under-researched, component of plant stress responses. Indeed, plants can be primed by a stress exposure such that they respond more efficiently to the next stress incident. Such stress priming and memory may be particularly beneficial to plants due to their sessile life style. Typically, the memory of priming lasts for several days after the end of the stress. During the past few years, my group has initiated a molecular analysis of heat stress memory in Arabidopsis thaliana. Heat stress memory is associated with sustained gene induction and transcriptional memory and we have demonstrated that this involves lasting chromatin changes. The underlying molecular mechanisms, however, remain poorly understood. Here, I propose to combine mechanistic dissection of heat stress memory in A. thaliana with concomitant translation of the results into the temperate cereal crop barley. In particular, we will study the following questions: What is the role of chromatin during heat stress memory? How do the transcription factors involved mediate memory-specific outputs? How does nucleosome positioning affect heat stress memory? How do histone modifications during stress memory interact with transcription, chromatin and nuclear organization? Is heat stress memory conserved in temperate cereal species? Can we engineer plants with improved stress memory? Using existing tools and new methodologies, the proposed analyses will yield unprecedented insight into the long-term adaptation of plants to abiotic stress and open up approaches for breeding of stress-tolerant crops.