The organisation of functional microcircuits in visual cortex
Determining how the organisation of neural circuitry gives rise to its function has been a major challenge for understanding the neural basis of perception and behaviour. In order to uncover how different regions of the neocortex...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FUNCCOMI
FUNCTIONAL CONNECTIVITY IN CORTICAL MICROCIRCUITS
265K€
Cerrado
VisualDendrite
In vitro and in vivo examination of the spatial and temporal...
194K€
Cerrado
PrefrontalMap
Organization and learning associated dynamics of prefrontal...
2M€
Cerrado
SICNET
Statistical Inference of the Cerebellar Network
197K€
Cerrado
In vivo Plasticity
Neuronal circuits and synaptic mechanisms of experience depe...
100K€
Cerrado
Información proyecto NeuroVision
Líder del proyecto
UNIVERSITAT BASEL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Determining how the organisation of neural circuitry gives rise to its function has been a major challenge for understanding the neural basis of perception and behaviour. In order to uncover how different regions of the neocortex process sensory information, it is necessary to understand how the pattern and properties of synaptic connections in a specific sensory circuit determine the computations it performs. I propose to establish the relationship between synaptic connectivity and neuronal function in primary visual cortex (V1) with the aim of revealing circuit-level mechanisms of sensory processing. To this end, my laboratory has developed a new method, by which visual response properties of neurons are first characterised with two-photon calcium imaging in vivo, and then synaptic connections between a subset of these neurons are assayed with multiple whole-cell recordings in slices of the same tissue. We will use this method to determine how connectivity, synaptic and intrinsic properties of different excitatory and inhibitory cell types relate to the emergence of their visual receptive fields (RFs). Specifically, we will test the dependence of connections on RF position, structure and other visual response properties, the specificity of connections between simple and complex cells, and the relative contribution of feedforward and recurrent excitation and inhibition towards shaping RFs. Morphological, physiological, connectional and functional data will be used to develop a biophysically realistic network model of this V1 circuit to examine the contribution of different circuit components to single-neuron and network function.