Tensors and Neural Networks for Computational Creativity
Creativity in language is ubiquitous. It is abundantly present in work with an explicit creative intention - such as literary novels or poems - but weighty doses of creativity also pervade everyday language use. We believe that a...
Creativity in language is ubiquitous. It is abundantly present in work with an explicit creative intention - such as literary novels or poems - but weighty doses of creativity also pervade everyday language use. We believe that a computational model of creativity that focuses on language will shed light on the enigmatic processes and interactions that come into play when we humans express ourselves in creative ways. Moreover, natural language generation systems - in order to produce realistic utterances - need to be endowed with a certain capacity for creativity. The main goal of this research project is to develop unsupervised models of language that exhibit creativity. In order to do so, we propose an integrated approach that combines a number of important and innovative techniques. First of all, we rely on constructs from linear algebra called tensors in order to express language content according to different parameters. Using tensors, we are able to induce latent semantics from multi-way co-occurrences of textual content, which can subsequently be used for the generation of creative expressions. Secondly, we rely on advanced machine learning techniques, notably neural networks. Neural network techniques have recently shown impressive performance in a number of natural language processing tasks. Yet, these techniques are mainly mimicking human language production, and thus are showing little creativity in language generation; by adapting neural network approaches in various ways, as well as integrating them with our tensor-based approach, we expect to develop algorithms that are able to grasp the meaning of textual content in a more profound and elaborate way, and at the same time are able to express it with creative intent. The project has the potential for groundbreaking results, not only because it would deepen our understanding of creativity, but also because of practical applications within the field of natural language processing.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.