Targeting replication stress recovery pathways in oncology
Genomic instability characterizes tumors, which have no clear ‘oncogenic-driver’ mutation, including triple-negative breast cancers (TNBCs). These patients do not benefit from molecularly targeted treatment and urgently need bette...
ver más
30-11-2024:
Cataluña Gestión For...
Se ha cerrado la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
29-11-2024:
IDAE
En las últimas 48 horas el Organismo IDAE ha otorgado 4 concesiones
29-11-2024:
ECE
En las últimas 48 horas el Organismo ECE ha otorgado 2 concesiones
Descripción del proyecto
Genomic instability characterizes tumors, which have no clear ‘oncogenic-driver’ mutation, including triple-negative breast cancers (TNBCs). These patients do not benefit from molecularly targeted treatment and urgently need better treatment options. Increasing evidence points to replication stress as the driver of genomic instability. Since replication stress compromises cell viability, cells have evolved mechanisms to mitigate this threat.
Recently, I discovered a novel cellular mechanism—mitotic Replication Stress Recovery (RSR)—that acts as an ‘emergency brake’ during mitosis, allowing recovery from high levels of replication stress. This machinery is critical for tumor cell survival, and therefore constitutes a promising target for anti-cancer drug development. However, it is unclear how this mitotic RSR is organized molecularly and how it can be targeted therapeutically.
In this project, I aim to molecularly define and therapeutically target the Mitotic Replication Stress Recovery (RSR) machinery in triple-negative breast cancer cells.
To this end, I will implement a series of complementary innovative strategies. First, I will use mass-spec-based proteomics to molecularly characterize components and wiring of the mitotic RSR machinery. Second, to identify the genetic profiles of cancer subgroups that are sensitive to inactivation of the mitotic RSR, functional genetic screens will be combined with visualization and quantification of replication stress in genomically-defined human cancer samples. Finally, my findings will be translated to the pre-clinical situation by exploring the feasibility of therapeutic inactivation of the RSR machinery in vitro and in vivo in a panel of triple-negative breast cancer models.
In summary, TENSION will provide advanced insight into the composition and wiring of the mitotic RSR machinery and will reveal the potency of targeting this pathway therapeutically for TNBCs and other hard-to-treat, genomically instable cancers.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.