Synthesis of 2 D semiconductors with honeycomb nanogeometry and study of their...
Synthesis of 2 D semiconductors with honeycomb nanogeometry and study of their Dirac type band structure and opto electronic properties
Graphene redirected the pathways of solid-state physics with a revival of 2-D materials showing Dirac
physics due to their honeycomb geometry. The charge carriers are fundamentally different from those
in conventional electronic s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2017-82071-ERC
ESPINTRONICA CON MATERIALES BIDIMENSIONALES Y HETEROSTRUCTUR...
68K€
Cerrado
PCI2019-103739
MATERIALES 2D FUNCIONALES Y HETEROESTRUCTURAS PARA DISPOSITI...
125K€
Cerrado
SPRInG
Short Period Superlattices for Rational In Ga N
1M€
Cerrado
MAT2017-88377-C2-1-R
TRANSISTORES DE SPIN BASADOS EN HETEROESTRUCTURAS VAN DER WA...
109K€
Cerrado
FJC2018-037098-I
Proprietades opticas y electronicas de materiales bidimensio...
50K€
Cerrado
PID2021-128760NB-I00
MODELIZACION MULTIESCALA DE LA BICAPA DE GRAFENO ROTADA
97K€
Cerrado
Información proyecto FIRSTSTEP
Duración del proyecto: 65 meses
Fecha Inicio: 2016-06-29
Fecha Fin: 2021-11-30
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Descripción del proyecto
Graphene redirected the pathways of solid-state physics with a revival of 2-D materials showing Dirac
physics due to their honeycomb geometry. The charge carriers are fundamentally different from those
in conventional electronic systems: the energy vs. wave vector relationship is linear instead of
quadratic, resulting in Dirac bands with massless carriers. A genuinely new class of materials will
emerge provided that classic semiconductor compounds can be molded in the nanoscale honeycomb
geometry: The Dirac-type band structure is then combined with the beneficial properties of
semiconductors, e.g. a band gap, optical and electrical switching, and strong spin-orbit coupling. The
PI recently prepared atomically coherent 2-D PbSe and CdSe semiconductors by nanocrystal assembly
and epitaxial attachment. Moreover, he showed theoretically that these systems combine a
semiconductor gap with Dirac-type valence and conduction bands, while the strong spin-orbit
coupling results in the quantum spin Hall effect. The ERC advanced grant will allow him to develop a
robust bottom-up synthesis platform for 2-D metal-chalcogenide semiconductor compounds with
honeycomb nanoscale geometry. The PI will study their band structure and opto-electronic properties
using several types of scanning tunnelling micro-spectroscopy and optical spectroscopy. The Fermilevel
will be controlled with an electrolyte-gated transistor in order to measure the carrier transport
properties. The results will be compared directly with those obtained on the same 2-D semiconductors
without honeycomb geometry, hence showing the conventional band structure. This should
unambiguously reveal the Dirac features of honeycomb semiconductors: valence band and conduction
band Dirac cones, non-trivial band openings at the K-points that may host the quantum spin Hall
effect, and non-trivial flat bands. 2-D semiconductors with massless holes and electrons open new
opportunities in opto-electronic devices and spintronics.