Roots must tightly balance uptake of ions and water from the soil into their vasculature. For this purpose, they developed complex systems of barrier mechanisms. The endodermis layer encircles the vasculature and via the casparian...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MendoFold
Linking mechanics and endoreduplication with tissue folding
204K€
Cerrado
SymPore
Plasmodesmata Symplasmic pores for plant cell to cell commu...
11M€
Cerrado
BRIDGING
The function of membrane tethering in plant intercellular co...
2M€
Cerrado
DeNovoMeristem
De novo formation of the generative plant meristem in 4D
184K€
Cerrado
BFU2011-30197-C03-03
PAPEL DEL TRAFICO DE PROTEINAS EN LA HOMEOSTASIS DE IONES Y...
137K€
Cerrado
BFU2014-59796-R
BASES ESTRUCTURALES DE LOS DETERMINANTES PRINCIPALES DE LA H...
182K€
Cerrado
Información proyecto SyDy RoCe
Duración del proyecto: 33 meses
Fecha Inicio: 2024-04-17
Fecha Fin: 2027-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Roots must tightly balance uptake of ions and water from the soil into their vasculature. For this purpose, they developed complex systems of barrier mechanisms. The endodermis layer encircles the vasculature and via the casparian strip (CS) and suberin acts as such a barrier. The CS blocks flux outside of cells (the apoplastic flux), and leaves only the symplastic pathway open for the exchange of molecules. Endodermis cell walls undergo suberisation dependent on phloem pole (PP) or xylem pole (XP) association. The unsuberised XP associated endodermis (XPAE) cells are speculated to fulfil an important role as transport highways. Despite this close association to the underlying vasculature, little is known about the dynamics of endodermal symplastic flux in the different poles.
I aim to elucidate differences in the cell-to-cell exchange of the endodermis in relation to barrier status and radial positioning. For this, I will use a photoconvertible fluorophore to quantify symplastic flux by XP versus PP association and suberisation status. Next, I will generate tools to specifically manipulate XPAE cells, by forcing them to close off their symplastic connections by plasmodesmal callose deposition, or to undergo suberisation.
I will use these tools to assess phenotypic differences on plant growth under stress conditions that affect endodermal barrier development (e.g. low iron, phosphate, and zinc). Together, this will result in unprecedented insights into how the endodermis achieves the specific transport of water, and ions, and will allow me to update models with radial information on endodermal selectivity and connection to vascular transport.