Surface and sub surface modified nano electrocatalysts for the conversion of CO2...
Surface and sub surface modified nano electrocatalysts for the conversion of CO2 to value added products A structure selectivity mechanism stability catalog
In the age of Anthropocene, major challenges faced by mankind today are the global climate change and the associated huge energy crisis due to ever increased population demand. So, the contemporary interests are towards energy sto...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CO2-CAT-ALOG
Duración del proyecto: 29 meses
Fecha Inicio: 2020-03-27
Fecha Fin: 2022-08-31
Líder del proyecto
KEMIJSKI INSTITUT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
150K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In the age of Anthropocene, major challenges faced by mankind today are the global climate change and the associated huge energy crisis due to ever increased population demand. So, the contemporary interests are towards energy storage and conversion reactions and in generating the alternative fuels (from CO2, waste to wealth strategy). Copper is the known best electrocatalyst for the reduction of CO2 (green-house gas). However, Cu is not particularly selective-stable electrocatalyst and is vary prone to deactivation; selectivity and stability are two important strictures directly associated with the geometric and electronic structure of the catalyst and hence on the CO2 conversion efficacy. Herein, we propose few strategies with CO2-CAT-ALOG such as doping with IIIA group elements, to effectively have active-selective-stable electrocatalyst to reduce CO2 to >C1 desired products and explain the mechanism of actions by carrying out experiments and theory in tandem. Appropriately, this proposal aims at the (i) synthesis of atomically precise, zero-dimensional (0D) modified Cu nanoparticles (mCNPs) supported over 2D materials, (ii) exploring the parameters governing the CO2 activation and stability of the reaction intermediates with the aid of DFT calculations (modelling and simulation at nano-scale) and micro-kinetic modelling (iii) detailed study on selectivity and stability of modified surface and sub-surface of CNPs with IIIA-group with the aid of high-end multi-analytical methodologies. This CO2-CAT-ALOG approach will not only bridge the gap between theory and experiments at the nano-scale level to a possible extent, but also facilitates intra-European knowledge transfer along with direct societal impacts. In addition, proposed work will not only provide solid guidelines to smart-design and screen the robust active-selective-stable electrocatalysts but also addresses issues to overcome impediments in the field of electrocatalysis of CO2 in near future.