Supramolecular & Covalent Bonds for Engineering Spatiotemporal Complexity in Hyd...
Supramolecular & Covalent Bonds for Engineering Spatiotemporal Complexity in Hydrogel Biomaterials
Current biomaterials poorly recapitulate the tough, responsive, and spatiotemporal behavior of native extracellular matrices (ECM). This recapitulation of ECM complexity is imperative to create environments that can effectively co...
ver más
Descripción del proyecto
Current biomaterials poorly recapitulate the tough, responsive, and spatiotemporal behavior of native extracellular matrices (ECM). This recapitulation of ECM complexity is imperative to create environments that can effectively communicate with living cells. A key missing component in synthetic ECM-mimetics is spatiotemporal control of material dynamics. Supramolecular biomaterials hold significant promise to fill this need, yet their poor mechanical properties often limit application. I hypothesize that strategic combinations of dynamic supramolecular assemblies with reversible/degradable covalent bonds can lead to tough, hierarchical, and spatiotemporally complex hydrogels. After all, nearly all hierarchical materials in nature are composed of optimized combinations of supramolecular and covalent bonds. In SupraValent, I will test my hypothesis with the design and exploration of spatiotemporal changes to hydrogel properties via covalent modification of 1D supramolecular polymers. SupraValent will first create structure/dynamics/property relationships of supramolecular assemblies between solution-phase studies and hydrogel materials. I will leverage this information to create tough supramolecular biomaterials and bioinks, which allow for the introduction of spatiotemporal gradients and cell-mediated changes (via degradation) to the material’s properties. Then, I will introduce innovative cell/material constructs where the cells create covalent bonds on the materials over the lifetime of culture. Here, genetically modified bacteria will introduce the spatiotemporal complexity into the construct, moving towards living material’s modifications. These studies will transform the way we create and control timescales in dynamic biomaterials, and open supramolecular hydrogels to new applications. Furthermore, this work will provide a much-needed breakthrough to creating life-like materials with controllable properties.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.