Engineering nanoparticle-polymer interactions to create instructive, tough nanoc...
Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regeneration
Self-healing hydrogels are investigated as promising biomaterials in tissue and organ regeneration applications, offering a powerful alternative for scarce donor tissue. However, these hydrogels are often insufficiently tough, whi...
Self-healing hydrogels are investigated as promising biomaterials in tissue and organ regeneration applications, offering a powerful alternative for scarce donor tissue. However, these hydrogels are often insufficiently tough, which is a significant limitation in their clinical use. Another drawback is that there are limited solutions on how to instruct cells for tissue healing. Thus, one key challenge is to develop self-healing hydrogels that are mechanically strong and can guide tissue regeneration. However, current methods to improve the mechanical properties of hydrogels negatively impact self-healing behavior.
In Nano4Bone, I aim to provide a novel solution to this challenge by engineering nanoparticle polymer interactions using metal-ligand coordination bonds, which, uniquely, are both stable and labile; ideal properties for creating spontaneous self-healing hydrogels. The nanoparticles act as dynamic crosslinkers to increase local crosslinking densities, thus dramatically improving the mechanical properties without affecting the self-healing behavior. Importantly, the nanoparticles can also act as bioactive units through smart incorporation of therapeutic ions to instruct tissue-healing behavior. The metal ligand bond can be tuned for temporally controlled release of bioactive nanoparticles, a novel approach which allows kinetic control over bioactive signals. To prove their clinical utility, I will optimize the materials to treat and regenerate bone tissue in osteosarcoma (OS), for which new treatment options are urgently needed.
Nano4Bone proposes an innovative method to drastically improve the mechanical properties of hydrogels without negatively impacting their self-healing abilities. The impact of the project will be large by addressing key challenges in the field, offering a new treatment for OS, and a wide application area of the new materials in regenerative medicine and other biomedical fields.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.