Studies in Harmonic Analysis and Discrete Geometry Tilings Spectra and Quasicr...
This proposal is concerned with several themes which lie in the crossroads of Harmonic Analysis and Discrete Geometry. Harmonic Analysis is fundamental in all areas of science and engineering, and has vast applications in most bra...
This proposal is concerned with several themes which lie in the crossroads of Harmonic Analysis and Discrete Geometry. Harmonic Analysis is fundamental in all areas of science and engineering, and has vast applications in most branches of mathematics. Discrete Geometry deals with some of the most natural and beautiful problems in mathematics, which often turn out to be also very deep and difficult in spite of their apparent simplicity. The proposed project deals with some fundamental problems which involve an interplay between these two important disciplines.
One theme of the project deals with tilings of the Euclidean space by translations, and the interaction of this subject with questions in orthogonal harmonic analysis. The PI has recently developed an approach to attack some problems in connection with the famous conjecture due to Fuglede (1974), concerning the characterization of domains which admit orthogonal Fourier bases in terms of their possibility to tile the space by translations, and in relation with the theory of multiple tiling by translates of a convex polytope, or by a function. A main goal of this project is to further develop new methods and extend some promising intermediate results obtained by the PI in these directions.
Another theme of the proposed research lies in the mathematical theory of quasicrystals. This area has received a lot of attention since the experimental discovery in the 1980's of the physical quasicrystals, namely, of non-periodic atomic structures with diffraction patterns consisting of spots. Recently, by a combination of harmonic analytic and discrete combinatorial methods, the PI was able to answer some long-standing questions of Lagarias (2000) concerning the geometry and structure of these rigid point configurations. In the present project, the PI intends to continue the investigation in the mathematical theory of quasicrystals, and to analyze some basic problems which are still open in this field.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.