Statistical physics based computational design of protein RNA complexes
This project aims to computationally design RNA molecules apt to bind to a given protein under given conditions (such as binding affinity, properties of the solution and temperature).
The relevance of this research lies in the cur...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BAP
A dynamical view of binding affinity
166K€
Cerrado
EBDD
Beyond structure integrated computational and experimental...
1M€
Cerrado
POCKETSPPI
Discovering and exploiting hidden pockets at protein protein...
100K€
Cerrado
RTI2018-101032-J-I00
ACELERACION DE LOS PROCESOS (BIO)MOLECULARES DE RECONOCIMIEN...
154K€
Cerrado
PRIGLUE
Protein-RNA interaction stabilization using molecular glues
2M€
Cerrado
PELE
P.E.L.E Protein Energy Landscape Exploration a la carte d...
1M€
Cerrado
Información proyecto COMPDESIGN
Líder del proyecto
UNIVERSITAT WIEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
63K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project aims to computationally design RNA molecules apt to bind to a given protein under given conditions (such as binding affinity, properties of the solution and temperature).
The relevance of this research lies in the current effort to elucidate the mechanism that guide RNA-protein complexes, which are abundantly found in the cell at all levels of relevant cell mechanisms. Further, such a study is expected to be a first valuable step in the effort of rational drug design in silico.
In this project, we propose to transfer concepts from statistical mechanics used in e.g. soft matter science, to this challenging problem. Such a physics-based approach will explicitly take into account entropic effects encountered in the RNA-protein complexes, which properly account for the flexibility of these biomolecules, but which are usually disregarded by current techniques. With such an approach, we aim to win physical insight into the mechanisms governing RNA-protein complexes (shown on the example of the Hfq-RNA complex). Then, simulations can help to overcome experimental bottlenecks and drive their progress.
In this project, the applicant aims to maintain close contacts with both other theoreticians and with the relevant experimental groups, both at the host institution and within the European Community.