Star like Oligo aniline s with Tunable Band Gaps for Tailored Nanostructures in...
Star like Oligo aniline s with Tunable Band Gaps for Tailored Nanostructures in Advanced Electronic Applications
The overarching aim of the proposed research is to advance the understanding and design of conjugated oligomeric materials with tunable optoelectronic properties, in particular materials based on oligo(aniline)s, for applications...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2016-78293-C6-1-R
NANOESTRUCTURAS MOLECULARES FUNCIONALES PARA DISPOSITIVOS OP...
182K€
Cerrado
OPTOELECTRONIC_DCA
Advanced optoelectronic materials through dynamic combinator...
45K€
Cerrado
CTQ2013-40562-R
NANOESTRUCTURAS ORGANICAS PARA ELECTRONICA Y FOTONICA
121K€
Cerrado
SOAFNPCM
Supramolecular Organization and Application of Functional Na...
45K€
Cerrado
MAT2016-78293-C6-3-R
NANOESTRUCTURAS MOLECULARES FUNCIONALES PARA DISPOSITIVOS OP...
121K€
Cerrado
MAT2016-79776-P
AJUSTE DE LAS PROPIEDADES OPTOELECTRONICAS DE NANOESTRUCTURA...
91K€
Cerrado
Información proyecto TANOGAPPs
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
231K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The overarching aim of the proposed research is to advance the understanding and design of conjugated oligomeric materials with tunable optoelectronic properties, in particular materials based on oligo(aniline)s, for applications in the EU priority area of organic electronics. To underpin and support this innovation, key new routes to novel molecular architectures and nanostructures will be explored.
The proposed research deals with the designed synthesis of a library of nanostructures based on star-like oligo(aniline)s from the Buchwald-Hartwig cross-coupling strategy and ionic self-assembly technique. Controlling the molecular architecture and acids dopants will allow for tuning of and controll over band gaps, physical dimensions and localized defects. This approach will lead to optimised nanostructured morphologies and ensure efficient charge separation and transport. As a result, enhanced mobility, sensitivity and selective interactions with external stimuli will offer smart nanomaterials for gas sensors.
The project will open unexplored avenues in this priority area of organic electronics through its inter- and multidisciplinary approach, i.e., the proposed research will rely on modern synthetic organic chemistry, chemicophysical analyses of optoelectronic properties and structure relationships, self-assembly in the solid state, device fabrication and testing.
It is expected that the outcomes of this proposed research will substantially impact across and beyond the mentioned range of disciplines. This project will therefore 1) aid in continuing to establish European excellence and competitiveness in the field of organic electronics, a priority research area in the European Research Area, and 2) is expected to accelerate the development of selective and tunable sensors, which will have major impact on ERA scientific communities, public health and EU security.