Electronic-structure theories allow us to simulate and predict the properties of novel materials and devices. The last 15 years have seen the development and application of techniques dedicated to the study of electronic excitatio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Electronic-structure theories allow us to simulate and predict the properties of novel materials and devices. The last 15 years have seen the development and application of techniques dedicated to the study of electronic excitations and atomic degrees of freedom. We are now witnessing a next phase in predictive electronic-structure theories, whereby the interactions with the environment are taken into account. Here, we focus on the interactions between a quantum object and its crystal lattice, taking into account the spin degrees of freedom and the spin-orbit corrections, central to the behaviour of some of the most exciting materials under intense study these days, from transition-metal dichalcogenides to topological insulators to qubits for quantum technologies.
In this project we will develop the computational tools, and apply them, to study transport in low-dimensional materials from first-principles, taking into account spin-dependent electron-phonon coupling. Only by doing this it will become possible to describe with predictive accuracy key properties that affect electronic and spin transport, and are fundamental in spin field-effect transistors, spin filters, spin diodes, spin qubits, spin Hall effect or spin locking. In particular, the researcher will (i) implement spin-resolved electron-phonon coupling in widely used open-source first principles software; (ii) use it to study spin-dependent and spin-independent transport properties in two dimensional (2D) materials, focusing on transition-metal dichalcogenides monolayers and; (iii) create and deploy the first open access electron-phonon database of 2D materials.
This Marie Sklodowska-Curie fellowship will allow the researcher to work in a university environment and group at the forefront of first-principles modelling, and in close collaboration with leading experimentalists. The project will allow him to bloom as an independent researcher and acquire new transversal, teaching, and core skills.