Approximations to dynamic density functional theory phase field simulations on...
Approximations to dynamic density functional theory phase field simulations on atomic scales
A recent innovation in materials modeling has been the phase field crystal model. Instead of a phenomenological phase field variable the quantity of interest is the atomic number density. This formulation has made it possible to i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2012-38205-C02-01
SIMULACION MULTIESCALA DE YSZ NANOESTRUCTURADA: DESDE LA DFT...
70K€
Cerrado
ab initio and QMC
Phase transition and polymerization of molecular solids byab...
209K€
Cerrado
MAT2012-38205-C02-02
SIMULACION MULTIESCALA DE YSZ NANOESTRUCTURADA: DESDE LA DFT...
29K€
Cerrado
SELPH2D
Spin Electron Phonon in 2D materials
203K€
Cerrado
COMEX
COmputational Modelling for EXtreme conditions
170K€
Cerrado
PID2021-125343NB-I00
CORRELACIONES, SUPERCONDUCTIVIDAD Y TOPOLOGIA EN MATERIALES...
139K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A recent innovation in materials modeling has been the phase field crystal model. Instead of a phenomenological phase field variable the quantity of interest is the atomic number density. This formulation has made it possible to incorporate the kinetics of phase transformations with properties of solids that arise due to their periodic structure. This includes elastic strain, topological defects, vacancy diffusion and polycrystalline grain boundary interactions. The appealing feature of the phase field crystal model is its connection with classical density functional theory, which allows material specific simulations on diffusive time scales, orders of magnitude larger than classical molecular dynamics.
Our mission is to foster international cooperation in phase field crystal modeling and serve as a platform for addressing global challenges in materials science by using the phase field crystal approach. Applications of interest are self-assembly of quantum dots in thin film growth and fluid-structure interactions in microfluidics.
We involve participants from diverse sectors, regions and science and engineering disciplines which have already proven to be able to work together efficiently.