Graph Theory is a highly active area of Combinatorics with strong links to fields such as Optimisation and Theoretical Computer Science. A fundamental meta-problem in Graph Theory is the following: given a graph H, what condition...
Graph Theory is a highly active area of Combinatorics with strong links to fields such as Optimisation and Theoretical Computer Science. A fundamental meta-problem in Graph Theory is the following: given a graph H, what conditions guarantee that another graph G contains a copy of H as a subgraph? This is particularly important when H is spanning, i.e. where G and H have the same number of vertices.
This project will address a range of exciting and challenging extremal and probabilistic problems on spanning subgraphs in graphs, in the following two interrelated areas:
1. Spanning subgraphs in random graphs: A key aim of Probabilistic Combinatorics is to determine the density threshold for the appearance of different subgraphs in random graphs. This is particularly difficult when the subgraph is spanning, where the known results and techniques are typically highly specific. This project will lead to a unified paradigm for studying thresholds of spanning subgraphs by introducing and developing a new coupling technique. This will provide an excellent platform to study the Kahn-Kalai conjecture, a bold general conjecture on appearance thresholds, and problems including hitting-time conjectures and universality problems.
2. Spanning subgraphs in coloured graphs: Many different combinatorial problems are expressible using edge coloured graphs, including Latin square problems dating back to Euler. My objectives here concern long-standing problems on spanning trees, cycles and matchings, and, through this, the resolution of several famous labelling and packing problems.
In preliminary work I have developed techniques to study these problems, techniques which will have a far reaching impact, and certainly lead to further applications, e.g. with hypergraphs and resilience problems. The objectives represent a carefully selected range of related major outstanding problems, whose solution would mark truly significant progress in the field.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.