Single-molecule visualization of temperature adaptation in sub-cellular dynamics...
Single-molecule visualization of temperature adaptation in sub-cellular dynamics and organization across bacteria
Most microorganisms lack homeothermic regulation which subjects them to unpredictable fluctuations in environmental temperature. Nevertheless, many bacteria and archaea can grow across a large range of up to 40°C. Most biochemical...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EvoCellBio
A combined in vitro and in vivo approach to dissect biochemi...
2M€
Cerrado
BacterialBlueprint
Deep single-cell phenotyping to identify governing principle...
2M€
Cerrado
BIGR
Biophysical Models of Bacterial Growth
2M€
Cerrado
PID2021-122158NB-I00
DESENTRAÑAR PRINCIPIOS DE DISEÑO DE COLECTIVOS DE CELULAS SI...
206K€
Cerrado
COMP-O-CELL
Computational Microscopy of Cells
2M€
Cerrado
PID2021-127773NB-I00
EXOCITOSIS, UN PARADIGMA DE LA ADAPTACION DEL REMODELAJE DE...
194K€
Cerrado
Información proyecto TEMPADAPT
Duración del proyecto: 61 meses
Fecha Inicio: 2023-03-06
Fecha Fin: 2028-04-30
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Most microorganisms lack homeothermic regulation which subjects them to unpredictable fluctuations in environmental temperature. Nevertheless, many bacteria and archaea can grow across a large range of up to 40°C. Most biochemical reactions in bacteria occur in the highly crowded cytoplasm constituting a complex and dynamic interaction network of a cell. Temperature affects the rate of both intra- and intermolecular reactions, and large-scale perturbations by temperature could be disastrous to cellular function, homeostasis, and sub-cellular organization. It is still largely unknown, how temperature affects the properties of the cytoplasm and what the consequences to cellular processes are. The driving hypothesis of this project is that bacteria can actively modulate their cytoplasmic state to avoid the detrimental effects of temperature fluctuations.
To test this, I have established cutting-edge super-resolution single-molecule tracking tools to directly observe molecule dynamics in live bacteria in real time. First, we will quantify the diffusion and activity of macromolecules and other probes as a function of temperature to uncover the changes in the cytoplasmic state. Second, we will probe different bacteria growing at temperatures from 0°C up to 100°C to characterize evolutionary differences in the cytoplasmic dynamics and temperature scaling of reaction rates. Finally, we will uncover mechanisms by which bacteria obtain different cytoplasmic properties. Overall, these approaches will reveal how the cytoplasmic state in bacteria changes with temperature and how this contributes to the cellular processes, which has significant implications on how microorganisms adapt to temperatures and what are the limits of cellular life.