Reading biomolecular signatures and understanding their role in health and disease is one of the greatest scientific challenges in genome and proteome biology. Yet, complete protein analysis at the single-molecule level remains an...
ver más
Descripción del proyecto
Reading biomolecular signatures and understanding their role in health and disease is one of the greatest scientific challenges in genome and proteome biology. Yet, complete protein analysis at the single-molecule level remains an unmet milestone. This pursuit is fundamentally hindered by the huge dynamic range of protein expression in cells and the insufficient spatio-temporal resolution of current analysis methods.
Next-generation single-molecule techniques that can precisely manipulate and sequence proteins in space and time are urgently needed to reach this goal. Among these, nanopore platforms are at the forefront, leading in terms of read length, throughput and sensitivity. However, the major challenges associated with translocation speed control and the precise-readout in solid-state nanopore devices, remain prohibitive.
In SIMPHONICS, I will resolve these issues by developing the first integrated platform that combines nanopore transport measurements, spatially modulated acoustic wavefields and single-molecule fluorescence time traces to confine, scan and optically fingerprint proteins in a non-invasive and massively parallel manner. The feasibility of this method will be established by attaining three main objectives: 1) Confining and controllably manipulating individual molecules using acoustic nanotweezers; 2) On-demand engineering of 2D material optical emitters as ultrabright fluorescent probes for energy transfer based detection, and 3) Identifying proteins/peptides from their optical signatures in multi-color Förster resonance energy transfer (FRET) during acoustophoresis. With this powerful and unique platform, I will harness the vast potential of acousto-photonic interactions in monolithic nanopore devices. Successful achievement of the project objectives will result in a high-throughput and non-destructive protein fingerprinting platform and signify a considerable leap forward in our quest to unravel the human proteome.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.