Energy is of essential importance to our society. The global warming thread, coursed by massive greenhouse gas emissions, forces us to use existing energy sources with more responsibility. This includes the discovery of new energy...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ROTRANS
Duración del proyecto: 40 meses
Fecha Inicio: 2020-03-16
Fecha Fin: 2023-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Energy is of essential importance to our society. The global warming thread, coursed by massive greenhouse gas emissions, forces us to use existing energy sources with more responsibility. This includes the discovery of new energy sources as well as the improvement of process efficiencies in existing machines. Several technologies make use of ultra-compact transonic and supersonic turbomachinery stages. Occurring shock systems in the supersonic flows, e.g. at the leading edge of the turbomachine rotor, reduce the machine efficiency drastically and threaten the responsible use of energy. The proposed project aims at developing a new understanding of the shock establishment and high-frequency response within the rotor. A recent project allows the expectation to improve turbomachinery stage efficiencies by more than 14%points. The project includes a numerical analysis of observed phenomenon to develop a reduced model based on 3D characteristics. This model will thoroughly be validated by advanced experimental measurements. The final applicability of the reduced model and the functionality of the novel concept will be assessed by a design optimization of a turbine and a compressor geometry. With Purdue, a world unique lab owning advanced laser diagnostic tools and expertise on supersonic turbines and with TU Berlin, a lab with massive experience on compressors and the overall engine analysis will participate to assure the success of this project. The project is structured to allow a complete transfer of gained knowledge in the outgoing phase towards TU Berlin. Training activities in both entities plus the composition of the project topic will strengthen my professional formation. I can build on my experience in numerical simulations, one-dimensional modeling and experiments applied on radial turbomachinery. During the fellowship, I will be trained in transonic flow in turbines and compressors combined with reduced models based on 3D characteristics.