Rise of the 3rd dimension in nanotemperature mapping
The last decades witnessed a quest for devices responding to temperature at a distance with unprecedented space resolution, approaching the nanoscale. Such devices are valuable in both fundamental and applied science, from overhea...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2017-90024-P
DESARROLLANDO LA PROXIMA GENERACION DE SENSORES TERMICOS EN...
131K€
Cerrado
TherMotors
Development of Advanced Thermometric Nanomotors
181K€
Cerrado
PID2021-123943NB-I00
CONTROL OPTICO DE TRANSICIONES DE FASE MAGNETICAS IMPULSADAS...
290K€
Cerrado
FIS2015-64222-C2-1-P
PROPIEDADES TERMODINAMICAS, ELECTRONICAS Y DE TRANSPORTE EN...
54K€
Cerrado
CSIC10-4E-805
Microscopio de fuerzas atómicas de alta resolución para el d...
199K€
Cerrado
Información proyecto ThermoRise
Duración del proyecto: 70 meses
Fecha Inicio: 2020-02-12
Fecha Fin: 2025-12-31
Líder del proyecto
UNIVERSIDADE DE AVEIRO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
The last decades witnessed a quest for devices responding to temperature at a distance with unprecedented space resolution, approaching the nanoscale. Such devices are valuable in both fundamental and applied science, from overheat in micromachines to hyperthermia applied to cells. Despite great advances, the response is still collected in 2D. In real systems, heat flows in 3 dimensions such that 2D nanothermometers give just a plane view of a 3D reality. The restriction to 2D emerges because space resolution is bound to time and temperature resolutions, leading to a trilemma: scanning into the 3rd dimension is time consuming and cannot be achieve without losing temperature and time resolutions. While incremental improvements have been achieved in recent years, adding the 3rd dimension to nanothermometry is crucial for further impact and requires an innovative approach. Herein, I propose the development of nano local probes with tailored magnetic properties recording critical information about local temperature in 3D. These thermometric local probes avoid the resolution trilemma by recording the most relevant temperature information instead of reading the present temperature value. In many applications, including cellular hyperthermia, most part of the current temperature reading is of minor relevance and can be dropped. The key temperature information includes the maximum temperature achieved, the surpass of a given temperature threshold, and the time elapsed after this surpass. Once recorded, this key information can be read in 3D by standard devices (such as confocal microscopes and magnetic resonance imaging scanners) without time constrains and thus keeping a high space and temperature resolution. Moreover, the reading step can be performed in-situ and/or ex-situ, decoupling probes and reading devices if needed. This widens the range of applications of nanothermometers, allowing detection in confined environments and in non-transparent media.