Descripción del proyecto
Minimally invasive diagnostic and surgical tools have become a staple in modern medical routines worldwide. Endoscopes, a few millimeters in size, are inserted directly into the organ or cavities inside the body, allowing for high precision and fewer trauma-containing procedures. So far, these minimally invasive procedures have been limited to conventional micro-optical imaging and micro-mechanical surgical routines, such as cutting and making small incisions. Ideally, any medical intervention should be capable of re-creating intact biological ultra-structure and function directly at the target site following the most relevant cytocompatible approaches. This proposal seeks to implement noninvasive methods yield to obtain safeguarded, integrated, and improved cutting-edge additive and subtractive 3D manufacturing technologies for developing a miniaturized endoscopic device for organ structure and function intravital regeneration.