Within the areas of cell biology, biomedicine and minimal invasive surgery, there is a need for soft, flexible and dextrous biocompatible manipulators for handling biological objects, such as single cells and tissues. Present day...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
STREAM
Scaled TeleRobotics for EnhAnced Microsurgery
79K€
Cerrado
TWINNIMS
Increasing the scientific excellence and technological innov...
800K€
Cerrado
HapticCell
Haptic micromanipulation system for low cost autonomous micr...
150K€
Cerrado
VIBEBOT
Vibrational Micro-robots in Viscoelastic Biological Tissues
1M€
Cerrado
BIOELE
Functional Biointerface Elements via Biomicrofabrication
1M€
Cerrado
Información proyecto POLYACT
Líder del proyecto
Linköping University
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
198K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Within the areas of cell biology, biomedicine and minimal invasive surgery, there is a need for soft, flexible and dextrous biocompatible manipulators for handling biological objects, such as single cells and tissues. Present day technologies are based on simple suction using micropipettes for grasping objects. The micropipettes lack the possibility of accurate force control, nor are they soft and compliant and may thus cause damage to the cells or tissue. Other micromanipulators use conventional electric motors however the further miniaturization of electrical motors and their associated gear boxes and/or push/pull wires has reached its limits. Therefore there is an urgent need for new technologies for micromanipulation of soft biological matter.
Our aim, in light of this proposed Marie Curie Fellowship, is to develop soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species such as cells and surgical tools for minimal invasive surgery. This ambitious objective will be accomplished by developing novel patterning and microfabrication methods for polymer microactuators and integrate these microactuators into easy to use manipulation tools. We aim to produce tools with minimal dimensions of 100 µm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology.