Resonant Cavity Enhanced Organic Photo detectors and Photovoltaics
Organic photo-detecting devices (OPDs) and solar cells (OSCs) both rely on thin films containing blends of electron donors and acceptors, sandwiched between transmissive and reflective electrodes. This project aims to significantl...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ConTROL
Charge TRansfer states for high performance Organic eLectron...
2M€
Cerrado
PGC2018-099744-B-I00
AMPLIFICACION DE LOS FENOMENOS OPTOELECTRONICOS EN MICROCAVI...
61K€
Cerrado
OSNIRO
Organic Semiconductors for NIR Optoelectronics
4M€
Cerrado
ENLIGHTMENT
Photonic Electrodes for Enhanced Light Management in Optoele...
2M€
Cerrado
CTQ2010-18859
ESTUDIO DE MOLECULAS OPTICA Y ELECTROQUIMICAMENTE ACTIVAS Y...
75K€
Cerrado
MAT2014-54852-R
MATERIALES OPTICOS AVANZADOS PARA DISPOSITIVOS OPTOELECTRONI...
242K€
Cerrado
Información proyecto RCE-OPP
Duración del proyecto: 24 meses
Fecha Inicio: 2020-03-20
Fecha Fin: 2022-03-31
Líder del proyecto
UNIVERSITEIT HASSELT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
178K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Organic photo-detecting devices (OPDs) and solar cells (OSCs) both rely on thin films containing blends of electron donors and acceptors, sandwiched between transmissive and reflective electrodes. This project aims to significantly enhance the performance of such devices, by understanding and manipulating resonant optical cavity effects implemented in this simple device architecture. By tuning the cavity resonance wavelength within the optical gap of both donor and acceptor, weak absorption of intermolecular charge transfer (CT) states is significantly enhanced, opening up opportunities to extend the absorption window to longer wavelengths. Using recently reported new non-fullerene acceptors, we will fabricate and characterize wavelength selective resonant cavity enhanced OPDs with high external quantum efficiencies and short response times, operating at longer wavelengths (>1200 nm) than the current state-of-the-art OPDs. To improve OSC performance, we will tune the cavity resonance wavelength to the optical absorption peak wavelength of either the strongly absorbing donor or acceptor. This results in strong light-matter effects causing a redshift of the absorption onset. This approach will be exploited to overcome the rather large voltage losses and optical absorption losses in state-of-the-art OSC devices.