Regulation of DNA interstrand crosslink repair by ubiquitin.
The overall objective of this proposal is to understand, on an atomic level, the mechanism of activation and regulation of the Fanconi Anemia (FA) DNA repair pathway. Homozygous mutations in the FA pathway lead to Fanconi Anemia,...
The overall objective of this proposal is to understand, on an atomic level, the mechanism of activation and regulation of the Fanconi Anemia (FA) DNA repair pathway. Homozygous mutations in the FA pathway lead to Fanconi Anemia, a devastating childhood genome instability disorder, typified by bone marrow failure and a high predisposition to cancers. The FA pathway is required for the repair of DNA interstrand crosslinks (ICLs), the hallmark of many cancers and FA. ICL repair is poorly understood on a biophysical and mechanistic level. The FA pathway is regulated by ubiquitin, in a cycle of monoubiquitination and deubiquitination of FANCD2. Despite considerable advances in our understanding of the genetics of the pathway, there is strikingly little known on a mechanistic and chemical level concerning how the ubiquitin signal is assembled, recognised and disassembled. We will define, on an atomic level, the site-specific monoubiquitination and deubiquitination cycle of FANCD2 in its entirety. We will determine the mechanism of FANCD2 monoubiquitination, identify and characterise currently unknown readers of the monoubiquitin signal, define the role of the core complex in the modification of FANCD2, and the requirements for removal of the signal. To tackle this ambitious work we will determine the atomic level three-dimensional structure of key complexes in the modification cycle, and develop a novel method for producing large quantities of stably modified FANCD2. The results of our work will represent a major breakthrough in our knowledge and understanding of the regulation of a critical DNA repair process, will provide a model for understanding mechanisms of monoubiquitination, and will open up both therapeutic potential and new pathways for research into the cause and cure of FA, cancers, and aldehyde-induced liver or bone marrow failure.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.