Proper cell size and shape are important for many biological functions, such as metabolism, signaling, motility, and development. This proposal addresses the fundamental question of how bacteria control their morphology and their...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2019-005763-P
ACTUALIZACIÓN Y MEJORA DEL SERVICIO DE MICROSCOPÍA Y CITOMET...
280K€
Cerrado
UNMU08-2E-001
Microscopio electrónico de transmisión de alto voltaje (200K...
539K€
Cerrado
MemProDx
The dynamic structure of protein domains within the cytoplas...
188K€
Cerrado
BFU2010-14910
ENERGETICA Y DINAMICA DE INTERACCIONES DE PROTEINAS DE DIVIS...
18K€
Cerrado
BIO2012-33314
DE LAS CELULAS VIVAS A LOS VIRUS Y LAS MOLECULAS: NUEVAS EST...
152K€
Cerrado
UNZA08-4E-022
SISTEMA DE ANALISIS DE FLUORESCENCIA
171K€
Cerrado
Información proyecto RCSB
Duración del proyecto: 59 meses
Fecha Inicio: 2016-02-05
Fecha Fin: 2021-01-31
Líder del proyecto
INSTITUT PASTEUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Proper cell size and shape are important for many biological functions, such as metabolism, signaling, motility, and development. This proposal addresses the fundamental question of how bacteria control their morphology and their cell volume with high precision, using the rod-like bacterium Escherichia coli as a primary model system. Bacterial cell shape is physically determined during growth by the enzymatic expansion and remodeling of the peptidoglycan (PG) cell wall, a partially ordered elastic meshwork that is the pressure-bearing component of the cell envelope. In this proposal we will address two fundamental questions:
i) How do cells physically build and remodel their macroscopically ordered cell wall to reproducibly acquire cell shape? We will thus image the dynamics of the PG cell wall and of the enzymatic and structural proteins involved in its expansion, using high-precision video fluorescence microscopy and spectroscopy. From spatio-temporal correlations measured in steady-state experiments and after physical, chemical, or biological perturbations, we will deduce how different physical cues affect and regulate cell-wall expansion.
ii) How do bacteria regulate their own cell volume, and what role does intracellular crowding play in this context? The intracellular mass density of bacteria is remarkably well conserved during growth, suggesting that cell size is regulated to maintain a constant level of intracellular crowding. Crowding has been deemed important for the regulation of volume in slowly growing mammalian cells before. Here, we will study the role of intracellular crowding, osmotic pressure, and other physiological quantities on cell-volume regulation in bacteria. Furthermore, we will use phenotypic screening and genetic approaches to identify the pathways involved in cell-volume control.
Together, this proposal addresses a fundamental question of self-organization in biology using combined approaches from physics and biology.