Regular and Exotic behavior in Hamiltonian and low-dimensional dynamical systems
REXHALODYN aims at understanding some of the regular and exotic features of Hamiltonian systems, circle maps, and generalized interval exchange transformations, or GIETs. Hamiltonians provide a powerful description of classical me...
REXHALODYN aims at understanding some of the regular and exotic features of Hamiltonian systems, circle maps, and generalized interval exchange transformations, or GIETs. Hamiltonians provide a powerful description of classical mechanics phenomena. Circle maps and GIETs are archetypal examples that illustrate fundamental concepts and phenomena within dynamical systems. Moreover, the latter two offer simplified models that capture essential features of more complex systems; e.g., they appear naturally as Poincaré maps of (locally) Hamiltonian flows on compact surfaces, and thus are closely related to Hamiltonians in this context.
Within this framework, the words regular and exotic do not have a precise mathematical meaning; however, we use them here to stand for features in each system that are either well-behaved (regular), such as the existence of stable quasi-periodic motions in Hamiltonian, and rigidity phenomena in circle maps and GIETs; and for features that are ill-behaved (exotic), such as sensitive dependence to initial conditions in Hamiltonians or existence of singular invariant measures in circle maps and GIETs.
Understanding these complementary features deepens our understanding of the systems, their properties, and the underlying mathematical structures that give rise to a rich spectrum of behaviors.
The main objectives of this project are:
-Prove the existence of lower-dimensional invariant tori, associated with a resonant torus with any number of resonances, for general classes (e.g., convex) of near-integrable Hamiltonians.
-Obtain precise estimates for the Hausdorff dimension of the unique invariant probability measure of multicritical circle maps with irrational rotation number of bounded type.
-Obtain rigidity results for multicritical circle maps with irrational rotation number.
The research is planned for two years and takes as a basis many of the results and methods developed by the applicant in his previous works.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.