Refuelling Heavy Duty with very high flow Hydrogen
There is a strong demand from EU to decarbonise freight transport. RHeaDHy will contribute to this by developing high-performance hydrogen (H2) refuelling stations. RHeaDHy aims at fully implement and validate new refuelling proto...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HYDRUS
high pressure HYdrogen booster for DistRibUted small medium...
71K€
Cerrado
PRHYDE
Protocol for heavy duty hydrogen refuelling
3M€
Cerrado
H2Haul
Hydrogen fuel cell trucks for heavy duty zero emission logi...
28M€
Cerrado
H2REF-DEMO
Hydraulic compression for high capacity hydrogen refuelling...
6M€
Cerrado
H2REF
DEVELOPMENT OF A COST EFFECTIVE AND RELIABLE HYDROGEN FUEL C...
7M€
Cerrado
COSMHYC XL
COmbined hybrid Solution of Metal HYdride and mechanical Com...
3M€
Cerrado
Información proyecto RHeaDHy
Duración del proyecto: 49 meses
Fecha Inicio: 2022-12-07
Fecha Fin: 2027-01-31
Líder del proyecto
ENGIE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
5M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
There is a strong demand from EU to decarbonise freight transport. RHeaDHy will contribute to this by developing high-performance hydrogen (H2) refuelling stations. RHeaDHy aims at fully implement and validate new refuelling protocols that will allow to refuel 100kg H2 trucks in 1Omin. Partners will design and assembly a new very high flow refuelling line for 700bar H2 truck. To do so, they will develop missing key components needed to reach the mean flow target of 170g/s (300g/s at peak). The unique RHeaDHy comprehensive approach will guaranty an optimal design of components and refuelling line by gathering in the consortium best-in-class partners manufacturing all the components downstream high-pressure refuelling station storage to vehicle storage. This approach will allow to choose the optimal trade-off on constrains repartition among components and to fully consider vision of real vehicle constrains. New implemented refuelling protocols are based on previous work (PRHYDE) and standardization committee work, and involve calculation of refuelling coefficients specific to vehicle storage that need to be derived from hundreds of simulations. This extensive simulation work will be performed on refuelling model validated in previous European projects. To dedicate at least 1.5 years to an extensive test campaign, components and refuelling line design, manufacturing and assembly will be achieved within 2 years. 2 refuelling stations will be installed in France and Germany within the first 2.5 years. 2 truck storage test systems will be used to test and validate refuelling protocols on full scale storage. This work will allow to provide feedback from the field to significantly contribute to the establishment of standards on refuelling interface components and protocols. RHeaDHy will then represent a significant step forward to unlock H2 truck market by allowing wide and performant refuelling station network based on European alternative fuel infrastructures ambition.