Innovating Works
HORIZON-JTI-CLEANH2-2022-04-04
Dry Low NOx combustion of hydrogen-enriched fuels at high-pressur...
ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieved by transitioning away from fossil fuels and by increasing the share of Renewable Energy Sources (RES). However, the volatility in power output introduced by increasingly large shares of RES in the future energy system represents a key challenge. In this context, gas turbines (GTs) are considered to be the most robust, mature and cost-effective technology especially for large-scale power generation and are bound to reinforce their role as guarantors of grid stability and reliability. In order to fulfil this role in line with the Paris Agreement’s goals, power generation from gas turbines needs to be decarbonised. A convenient approach to achieve this is by blending increasingly higher fractions of hydrogen into natural gas – the gas turbines’ conventional fuel.
Sólo fondo perdido 0 €
European
This call is closed Esta línea ya está cerrada por lo que no puedes aplicar.
An upcoming call for this aid is expected, the exact start date of call is not yet clear.
Presentation: Consortium Consortium: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Minimum number of participants.
This aid finances Proyectos:

ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieved by transitioning away from fossil fuels and by increasing the share of Renewable Energy Sources (RES). However, the volatility in power output introduced by increasingly large shares of RES in the future energy system represents a key challenge. In this context, gas turbines (GTs) are considered to be the most robust, mature and cost-effective technology especially for large-scale power generation and are bound to reinforce their role as guarantors of grid stability and reliability. In order to fulfil this role in line with the Paris Agreement’s goals, power generation from gas turbines needs to be decarbonised. A convenient approach to achieve this is by blending increasingly higher fractions of hydrogen into natural gas – the gas turbines’ conventional fuel.

Project results are expected to contribute to the following expected outcomes:

Develop a portfolio of solutions of full-scale gas turbine combustors for decarbonised, dispatchable and flexible heat and power generation across different systems sizes; from dist... see more

ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieved by transitioning away from fossil fuels and by increasing the share of Renewable Energy Sources (RES). However, the volatility in power output introduced by increasingly large shares of RES in the future energy system represents a key challenge. In this context, gas turbines (GTs) are considered to be the most robust, mature and cost-effective technology especially for large-scale power generation and are bound to reinforce their role as guarantors of grid stability and reliability. In order to fulfil this role in line with the Paris Agreement’s goals, power generation from gas turbines needs to be decarbonised. A convenient approach to achieve this is by blending increasingly higher fractions of hydrogen into natural gas – the gas turbines’ conventional fuel.

Project results are expected to contribute to the following expected outcomes:

Develop a portfolio of solutions of full-scale gas turbine combustors for decarbonised, dispatchable and flexible heat and power generation across different systems sizes; from distributed systems all the way to large scale power generation plants;Ensure a cost-effective and safe utilisation of hydrogen as gas turbine fuel, including issues related to social acceptance of hydrogen-fired power plants by local communities; Project results are expected to directly contribute to the objectives of the Clean Hydrogen JU SRIA Pillar 3, ‘Hydrogen End Uses: Clean heat and Power’ on preparing gas turbines to run on 100% hydrogen, whilst keep conversion efficiencies and NOx emission to acceptable levels. In particular the following objectives and related KPIs as included the Clean Hydrogen JU SRIA should be addressed:

Allow substantial increase of hydrogen-firing capabilities of new or existing gas turbine combustion systems to volumetric Hydrogen fractions between 70% and 100%; Demonstrate emission-compliant operation, in line with emission limits set by legislation; Target @ 70% vol H2: <25 NOx ppmv@15%O2/dry or 29 NOx mg/MJ fuel Target @ 100% vol H2: <25 NOx ppmv@15%O2/dry or 24 NOx mg/MJ fuel Demonstrate operational (load) flexibility of gas turbines, within the standard specifications for natural gas operation, at all Hydrogen fractions (0-100%); Target for maximum H2 content during start-up of 20% volume H2 in 2024 with a view to reach 100% volume H2 for 2030;Target for maximum efficiency reduction in H2 operation of 10% points @70% Volume of H2 for 2024 with a view to reach 10% points @100% H2 in 2030;Target for minimum ramp up rate of 10% load / minute @70% volume H2 in 2024 with a view to reach 10% load / minute @100% H2. Allow for a significant variability of the hydrogen fraction in natural gas, depending on the actual availability of hydrogen, which should be handled seamlessly by the gas turbine combustion system: Target for handling H2 content fluctuations of ±15% H2 volume / minute in 2024 with a view to reach ±30% H2 volume / minute in 2030.
Scope:The capability for gas turbines to operate on hydrogen-based fuels is a key future requirement to fulfil the target of CO2-free power generation. Currently, the maximum volumetric hydrogen fraction, up to which commercially available gas turbines can be operated with, lies between 30% and 50% depending on the specific gas turbine class and type. Ongoing H2020 projects (HYFLEXPOWER[1], FLEXnCONFU[2]) are focusing on power-to-gas-to-power technologies and partly also address hydrogen combustion in gas turbines. They are focussing on the whole power-to-gas-to-power system and hence either on small GT sizes (12MW in HYFLEXPOWER) or target to demonstrate small hydrogen fractions (FLEXnCONFU). Consequently, significant technological advancements in the gas turbines’ combustion systems are required to further reduce and ultimately eliminate natural gas from the fuel blend.

The peculiar thermodynamic and combustion properties of hydrogen (e.g. diffusivity, reactivity, flame speed etc.) pose new challenges towards the achievement of a stable combustion process. These challenges are greatly increased for hydrogen combustion at the high-pressure conditions, which are relevant for gas turbine operation.

The scope of this topic is to design and demonstrate in relevant environment a scaled and full-size combustion system, i.e, same geometry and fire power as finally installed in the gas turbine. It is expected that experimental investigation will be performed up to full-load condition at least on a single burner of the gas turbine, including the monitoring and control in case of new combustors as well as for retrofits. These combustion systems should be capable of operating at full gas turbine pressure conditions with any concentration of hydrogen admixed with natural gas and focus on volumetric hydrogen contents between 70-100%, i.e. well beyond the capability of state-of-the-art commercial gas turbines.

Activities are expected to start at TRL4 and should foresee the necessary laboratory experiments and numerical modelling leading to the design and validation of a full-size combustion chamber. At the end of the project duration, the proposed and developed solutions should achieve TRL6 and be validated in a relevant environment.

In order to achieve the expected outcomes, the development of the combustion system development should have in mind the following constraints and present solutions to overcome the associated technical hurdles:

Stable combustion properties of hydrogen-rich flames demonstrated in full-scale combustor hardware at high pressure gas turbine conditions and across the entire GT load. This includes static (no flame flashback) as well as dynamic stability (no thermo-acoustic instabilities)Ensure sufficiently high firing temperatures to maintain high cycle efficiency of the respective gas turbine class.Ensure ultra-low emissions of air pollutants, in particular those of nitrous oxides (NOx)Development of solutions for a combustion system that is capable to overcome previously mentioned technical challenges without the use of diluents (e.g. nitrogen, steam dilution, etc). Consortia are expected to include turbine manufacturers. It is also encouraged to seek the involvement of plant operators. In addition, proposals should demonstrate that they will have access to the infrastructure that will be necessary to undertake the full-size testing.

As there may be different means to address the aforementioned technical hurdles, the specific research activities should be clearly detailed in the project proposal. Preferably the topic will support complementary approaches for small to medium power industrial gas turbines (above 12 MW electric) and large heavy-duty gas turbines (above 200 MW electric).

Activities are expected to start at TRL 4 and achieve TRL 6 by the end of the project.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.


[1]https://cordis.europa.eu/project/id/884229

[2]https://cordis.europa.eu/project/id/884157

see less

Temáticas Obligatorias del proyecto: Temática principal: Mechanical engineering Electrical engineering Electronic engineering In Chemical engineering

Consortium characteristics

Scope European : The aid is European, you can apply to this line any company that is part of the European Community.
Tipo y tamaño de organizaciones: The necessary consortium design for the processing of this aid needs:

characteristics of the Proyecto

Requisitos de diseño por participante: Duración:
Requisitos técnicos: ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieved by transitioning away from fossil fuels and by increasing the share of Renewable Energy Sources (RES). However, the volatility in power output introduced by increasingly large shares of RES in the future energy system represents a key challenge. In this context, gas turbines (GTs) are considered to be the most robust, mature and cost-effective technology especially for large-scale power generation and are bound to reinforce their role as guarantors of grid stability and reliability. In order to fulfil this role in line with the Paris Agreement’s goals, power generation from gas turbines needs to be decarbonised. A convenient approach to achieve this is by blending increasingly higher fractions of hydrogen into natural gas – the gas turbines’ conventional fuel. ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieved by transitioning away from fossil fuels and by increasing the share of Renewable Energy Sources (RES). However, the volatility in power output introduced by increasingly large shares of RES in the future energy system represents a key challenge. In this context, gas turbines (GTs) are considered to be the most robust, mature and cost-effective technology especially for large-scale power generation and are bound to reinforce their role as guarantors of grid stability and reliability. In order to fulfil this role in line with the Paris Agreement’s goals, power generation from gas turbines needs to be decarbonised. A convenient approach to achieve this is by blending increasingly higher fractions of hydrogen into natural gas – the gas turbines’ conventional fuel.
Do you want examples? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Financial Chapters: The chapters of financing expenses for this line are:
Personnel costs.
Expenses related to personnel working directly on the project are based on actual hours spent, based on company costs, and fixed ratios for certain employees, such as the company's owners.
Subcontracting costs.
Payments to external third parties to perform specific tasks that cannot be performed by the project beneficiaries.
Purchase costs.
They include the acquisition of equipment, amortization, material, licenses or other goods and services necessary for the execution of the project
Other cost categories.
Miscellaneous expenses such as financial costs, audit certificates or participation in events not covered by other categories
Indirect costs.
Overhead costs not directly assignable to the project (such as electricity, rent, or office space), calculated as a fixed 25% of eligible direct costs (excluding subcontracting).
Madurez tecnológica: The processing of this aid requires a minimum technological level in the project of TRL 4:. Los componentes que integran determinado proyecto de innovación han sido identificados y se busca establecer si dichos componentes individuales cuentan con las capacidades para actuar de manera integrada, funcionando conjuntamente en un sistema. + info.
TRL esperado:

Characteristics of financing

Intensidad de la ayuda: Sólo fondo perdido + info
Lost Fund:
For the eligible budget, the intensity of the aid in the form of a lost fund may reach as minimum a 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Guarantees:
does not require guarantees
No existen condiciones financieras para el beneficiario.

Additional information about the call

incentive effect: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
non -competitive competitive Very competitive
We do not know the total budget of the line
minimis: Esta línea de financiación NO considera una “ayuda de minimis”. You can consult the regulations here.

other advantages

SME seal: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-JTI-CLEANH2-2022-1 Dry Low NOx combustion of hydrogen-enriched fuels at high-pressure conditions for gas turbine applications ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieve...
Sin info.
HORIZON-JTI-CLEANH2-2022-03-02 Innovative and optimised MEA components towards next generation of improved PEMFC stacks for heavy duty vehicles
en consorcio: ExpectedOutcome:Hydrogen as fuel in transportation has significant advantages compared to pure battery electric propulsion, especially for h...
Cerrada | next call scheduled for the month of
HORIZON-JTI-CLEANH2-2022-01-08 Integration of multi-MW electrolysers in industrial applications
en consorcio: ExpectedOutcome:This flagship[1] project is expected to pave the way for further large-scale integration of electrolyser systems in industri...
Cerrada | next call scheduled for the month of
HORIZON-JTI-CLEANH2-2022-02-02 Hydrogen and H2NG leak detection for continuous monitoring and safe operation of HRS and future hydrogen/H2NG networks
en consorcio: ExpectedOutcome:The growing attention on methane emissions is also triggering a debate around the safety of hydrogen. Although different in...
Cerrada | next call scheduled for the month of
HORIZON-JTI-CLEANH2-2022-05-04 Development of validated test methods and requirements for measuring devices intended for measuring NG/H2 mixtures
en consorcio: ExpectedOutcome:No validated test methods for measuring devices used in the distribution and transmission of hydrogen-enriched natural gas c...
Cerrada | next call scheduled for the month of
HORIZON-JTI-CLEANH2-2022-04-01 Design and industrial deployment of innovative manufacturing processes for fuel cells and fuel cell components
en consorcio: ExpectedOutcome:Fuel cells offer the highest electrical efficiency for conversion of chemically stored energy. They can significantly contri...
Cerrada | next call scheduled for the month of