Rational Design for Coke resistant Dry Reforming Catalyst using Combined Theory...
Rational Design for Coke resistant Dry Reforming Catalyst using Combined Theory and Operando Raman Experiments
Increasing energy & chemical demands, rising CO2 emission and depleting fossil reserves have necessitated a search for an alternative technology to mitigate environmental issues, reduce oil consumption and satisfy energy and chemi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-107105RB-I00
REFORMADO SECO DE METANO INTENSIFICADO SOBRE ESPUMAS CATALIT...
182K€
Cerrado
MesoSi-CO2
Design of low cost and carbon resistant Ni based mesoporous...
202K€
Cerrado
TED2021-130621B-C42
IMITANDO LAS FUNCIONES DE TRANSFORMACION ENZIMATICAS DE CO2...
178K€
Cerrado
EQC2018-004752-P
Reactor catalítico automatizado y sistema analítico asociado
101K€
Cerrado
PIONEER
Plasma catalysis for CO2 recycling and green chemistry
4M€
Cerrado
PID2019-105960RB-C21
INTEGRACION DE PROCESO EN LA METANACION DE CO2: CATALIZADORE...
267K€
Cerrado
Información proyecto Biogas2Syngas
Duración del proyecto: 30 meses
Fecha Inicio: 2019-04-24
Fecha Fin: 2021-10-31
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
171K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Increasing energy & chemical demands, rising CO2 emission and depleting fossil reserves have necessitated a search for an alternative technology to mitigate environmental issues, reduce oil consumption and satisfy energy and chemical demand. Production of biogas (mainly methane & CO2) from animal farms in Europe and discovery of shale gas (~ 90% methane) worldwide has led researchers to revisit dry reforming of methane (DRM) into syngas (CO+H2). The use of biogas as feed for chemical production not only curb the global carbon footprint, but also open up avenues for the exploration of new concepts and opportunities for catalytic and industrial developments. Despite the significant potential, DRM has not been commercialized due to catalyst instability leading high operational cost. The key challenges in the field are to increase lifetime and performance of the catalyst by preventing coke formation. Knowledge of structural/morphological changes of catalyst under reaction conditions is important for rational design. To address these issues, concepts based on combined experiment and theory are proposed. Understanding catalyst structure-activity relationship, and mechanistic insights into the DRM process will be developed through operando Raman experiments and Density Functional Theory (DFT) calculations. Raman data will provide electronic state of the catalyst, catalyst structural information, nature of carbon deposits and structure-activity relationship. While, DFT studies will give reaction energy and activation barrier, which will help in understanding the reaction pathways and mechanism of coke formation. Multiscale kinetic modeling will be executed for rationalize experimental trends and establish catalyst structure-activity relationship. The knowledge obtained from this project will not only provide an insight about the effective catalyst design but also offer an avenue to explore new concepts and opportunities for industrial catalysis development.