Design of low cost and carbon resistant Ni based mesoporous silicas for chemical...
Design of low cost and carbon resistant Ni based mesoporous silicas for chemical CO2 utilization through tri reforming of methane
Increasing carbon dioxide (CO2) concentrations in our atmosphere are becoming evident and are having a tremendous effect on the global temperature rise. Growing awareness of greenhouse gas emissions has led to the implementation o...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-107105RB-I00
REFORMADO SECO DE METANO INTENSIFICADO SOBRE ESPUMAS CATALIT...
182K€
Cerrado
PID2021-123287OB-I00
MATERIALES POROSOS DE COMPLEJIDAD CONTROLADA PARA VALORIZACI...
121K€
Cerrado
DynaCatMe
Understanding the Dynamic Nature of Catalysts for Methane Ab...
173K€
Cerrado
EQC2018-004752-P
Reactor catalítico automatizado y sistema analítico asociado
101K€
Cerrado
MAT2014-52416-P
DESARROLLO DE NUEVOS CATALIZADORES PARA LA REDUCCION SELECTI...
175K€
Cerrado
Información proyecto MesoSi-CO2
Duración del proyecto: 46 meses
Fecha Inicio: 2020-03-11
Fecha Fin: 2024-02-08
Líder del proyecto
SINTEF AS
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
202K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Increasing carbon dioxide (CO2) concentrations in our atmosphere are becoming evident and are having a tremendous effect on the global temperature rise. Growing awareness of greenhouse gas emissions has led to the implementation of chemical CO2 utilization technologies. Tri-reforming of methane (TRM) can not only produce synthesis gas (CO + H2) with desired H2/CO ratios (1.5–2.0) but can also eliminate carbon formation which is a serious problem in reforming of methane. Moreover, TRM allows converting CO2 directly from flue gases when applied in natural gas-fired power plants. However, a lack of catalysts able to operate efficiently with sufficient long-term stability hinders the development of the process. In this project, the proposed solution is to design a Ni-based mesoporous silica resistant to sintering and carbon formation and able to perform superior catalytic conversion of CO2. The synthesis of catalysts takes advantage of renewable bio-sources, zero-cost industrial waste and assistance of microwaves. The latter is applied to reduce power usage. The catalytic measurements will be performed with gas composition typical of flue gases from a natural-gas-fired power plant. The materials will be characterized by methods dedicated to examine physico-chemical features, such as XRD, N2 sorption, TPR, H2 chemisorption, TGA/DSC-MS, and XPS. The catalysts with optimal properties will be studied by steady-state isotopic transient kinetic analysis (SSITKA). Moreover, density functional theory (DFT) will be carried out to support the experiments. The understanding of possible deactivation mechanisms (carbon formation, sintering, selectivity towards side reactions) will be studied during the Secondment stay (Sorbonne Université, France). Operando XAS-XRD measurements will be performed to reveal the nature of active sites on the tri-reforming catalysts.