Radiation-detected NMR: new dimension for Magnetic Resonance spectroscopy and im...
Radiation-detected NMR: new dimension for Magnetic Resonance spectroscopy and imaging
Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique, used in various fields, including chemistry, biology and medicine. However, conventional NMR has one big limitation, namely very small sensitivity, due to a l...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HP4all
Persistent and Transportable Hyperpolarization for Magnetic...
2M€
Cerrado
MagSense
Hyperpolarized NMR made simple
2M€
Cerrado
EQC2021-007194-P
Renovación y Mejora de Espectrómetros del CAI de RMN de la U...
1K€
Cerrado
MICRONMRLAB
Rotating Micro Detectors for Ultra Sensitive and High Resolu...
166K€
Cerrado
ULTRANMR
Ultrafast Hyperpolarized NMR and MRI in Multiple Dimensions
2M€
Cerrado
EQC2019-005757-P
RENOVACION DE CONSOLAS DE RF PARA LOS ESPECTRÓMETROS DE RESO...
162K€
Cerrado
Información proyecto RD-NMR
Duración del proyecto: 18 meses
Fecha Inicio: 2023-02-22
Fecha Fin: 2024-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique, used in various fields, including chemistry, biology and medicine. However, conventional NMR has one big limitation, namely very small sensitivity, due to a low level of polarisation of nuclear spins and inefficient signal detection by an induction signal in pick-up coils. My ERC Starting grant has explored the use of radiation-detected NMR (RD-NMR), in which very short-lived nuclei were used as novel NMR probes, bringing up to a billion-fold increase in NMR sensitivity. Such nuclei are produced at a radioactive-ion beam facility and are polarised on the fly, before being introduced into the sample.
In this Proof of Concept project, I want to use the advantaged of RD-NMR and explore the prospect of turning it into a more easily accessible analytic tool. I aim to build a prototype of a modular insert for conventional NMR and MRI spectrometers that will allow in-situ polarisation of longer-lived nuclei that can be acquired commercially. The insert will include a sample, rf coil for spin excitation, beta-particle detectors, connections to introduce the hyperpolarising agent and the radiolabelled molecule that will be polarised in situ. The insert will be complemented by hardware and software needed for the data acquisition.
During the project we will also explore the most suitable exploitation path, we will refine the end users and end market (including a workshop at CERN), and will investigate the patentability of the results. I will collaborate with researchers from University of Mainz, Knowledge Transfer specialists, and companies active in NMR and MRI.