Quantum Simulation with Universal Nonlinear optics
Quantum information processing is a transformative technology that will address societal needs by obtaining unprecedented computational power with quantum computers and simulators, unconditionally secure quantum communications, an...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SIBESQ
Silicon Chip Based Efficient and Scalable Quantum Processing...
272K€
Cerrado
SUPEREOM
Microwave to Optical Quantum Link Quantum Teleportation and...
178K€
Cerrado
Quantum BOSS
Quantum Broadband Optical Solid State Memories for Large Sca...
183K€
Cerrado
SILEQS
Spins Interfaced with Light for Quantum Silicon technologies
2M€
Cerrado
SEQUOIA
A scalable quantum architecture
1M€
Cerrado
Información proyecto QSun
Duración del proyecto: 27 meses
Fecha Inicio: 2022-06-09
Fecha Fin: 2024-09-30
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
231K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum information processing is a transformative technology that will address societal needs by obtaining unprecedented computational power with quantum computers and simulators, unconditionally secure quantum communications, and quantum-enhanced sensors. Photons play a central role in the development of quantum technologies due to their unique capability to encode quantum information with low-noise, transmit it over long distances, and process it in scalable photonic circuits. However, the lack of photon-photon nonlinearities poses a central challenge in the development of photonic quantum technologies. The aim of this proposal is to address this limitation for next-generation quantum photonic devices. The enabling technology is the combination of two quantum photonic platforms: light-matter interactions with quantum dot emitters in integrated nanostructures, and programmable quantum photonic circuits performing universal transformation in the temporal degree of freedom. Through the use of high-quality light-matter interfaces and efficient interconnection with photonic circuitry, this project will (1) develop devices able to perform high-quality programmable nonlinear circuits, and (2) demonstrate how such devices can be used to implement near-term applications, focusing on the quantum simulation of anharmonic molecular dynamics. The developed platform solves a critical set of challenges that have limited the scaling of quantum photonic devices, enabling transformative quantum photonic technologies for quantum computing and networking. The synergy between my strong experience in programmable quantum photonic devices and applications, the world-leading expertise of Prof. Lodahl’s host group in integrated light-matter interactions, and the high interdisciplinarity of the Niels Bohr Institute and University of Copenhagen, makes us uniquely placed to execute this ambitious project.