Spins Interfaced with Light for Quantum Silicon technologies
Leveraging the success of the microelectronics and integrated photonics industries, silicon is one of the most promising platforms for developing large-scale quantum technologies. Quantum chips already available in silicon rely on...
ver más
Descripción del proyecto
Leveraging the success of the microelectronics and integrated photonics industries, silicon is one of the most promising platforms for developing large-scale quantum technologies. Quantum chips already available in silicon rely on either long-lived electrical qubits based on individual quantum dots or single donors, or on photonic qubits probabilistically generated by non-linear optical processes. Another type of quantum system could combine the advantages of both former qubits by featuring at the same time a stationary qubit with long coherence times and an optical interface adapted to long-distance exchange of quantum information. However, such a qubit that would be associated to optically-active spin defects is still to be demonstrated in silicon. This is the challenging objective of the current project.
The starting point of the SILEQS project is the recent discovery that silicon hosts many fluorescent point defects that can be optically isolated at single scale, and furthermore emit at the near-infrared range and telecom bands associated with minimal losses in optical fibers. This project aims to demonstrate for the first time in silicon (1) the indistinguishable single-photon emission from individual defects and (2) the control over their spin degrees of freedom to create multi-spin quantum registers coupled to single photons. Such achievements would open the door to developing silicon-integrated deterministic sources of photonic qubits and spin qubits interfaced with light for long-distance quantum communications in a platform adapted to large-scale nanofabrication and integration. Considering the advanced nanotechnology based on silicon, the SILEQS project could have significant impact in quantum technologies, including quantum integrated photonics, large-scale quantum networks and solid-state hybrid quantum systems.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.