Quantum Measurements with Bose Einstein condensates strongly coupled to nanophot...
Quantum Measurements with Bose Einstein condensates strongly coupled to nanophotonic structures
Most of the technologies at the heart of our information society, including the semiconductor and the laser, are based on the laws of quantum mechanics. Yet, there is still a lot to gain in harnessing quantum physics at the elemen...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2017-86530-P
DISPOSITIVOS DE ONDAS DE MATERIA Y FOTONICOS PARA LAS TECNOL...
111K€
Cerrado
NanoArray
Optical lattices around a nanofiber waveguide
173K€
Cerrado
LuMiNouS
Next Generation Quantum Light Matter Interfaces based on Ato...
173K€
Cerrado
MAT2017-83722-R
ACOPLAMIENTO CUANTICO DE LUZ Y MATERIA EN SISTEMAS DE DOS DI...
242K€
Cerrado
NanoAtom
Quantum Optical Physics with Neutral-Atom Waveguide-QED
2M€
Cerrado
SPIN-OPTRONICS
Spin effects for quantum optoelectronics
3M€
Cerrado
Información proyecto QuantuM-nano
Duración del proyecto: 40 meses
Fecha Inicio: 2015-04-13
Fecha Fin: 2018-08-13
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Most of the technologies at the heart of our information society, including the semiconductor and the laser, are based on the laws of quantum mechanics. Yet, there is still a lot to gain in harnessing quantum physics at the elementary level, for example to overcome the sensitivity limits in various kinds of measurements in the quantum regime. In this project, we plan to explore an emerging field of quantum technologies at the boundary between atomic physics and nanoscience, by studying the properties of Bose-Einstein condensates coupled to the evanescent field of nanophotonic structures. We will use this new light-matter interface to build a hybrid quantum gyroscope where the optical Sagnac effect in a photonic integrated circuit is enhanced by slow light in a Bose-Einstein condensate strongly coupled to it. The optical structures will be integrated on atom chips, for improved stability and scalability. Beyond the gyroscope itself, this work will create new prospects for combining the technological opportunities of nanophotonics with the very fruitful field of atomic physics, opening new avenues in quantum technologies, which are expected to become in the near future a key driver for the European competitiveness in information technology.