Quantum Optical Physics with Neutral-Atom Waveguide-QED
The coupling of cold atoms to nanophotonic devices has recently opened a variety of novel opportunities for controlling light-matter interactions. Tailored dispersion relations offer unique features beyond conventional settings. I...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NanoArray
Optical lattices around a nanofiber waveguide
173K€
Cerrado
FoQAL
Frontiers of Quantum Atom Light Interactions
1M€
Cerrado
LuMiNouS
Next Generation Quantum Light Matter Interfaces based on Ato...
173K€
Cerrado
MAT2017-83722-R
ACOPLAMIENTO CUANTICO DE LUZ Y MATERIA EN SISTEMAS DE DOS DI...
242K€
Cerrado
SEAQUEL
Structured Ensembles of Atoms for Quantum Engineering of Lig...
2M€
Cerrado
DAALI
Disruptive Approaches to Atom Light Interfaces
3M€
Cerrado
Información proyecto NanoAtom
Duración del proyecto: 59 meses
Fecha Inicio: 2023-10-04
Fecha Fin: 2028-09-30
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The coupling of cold atoms to nanophotonic devices has recently opened a variety of novel opportunities for controlling light-matter interactions. Tailored dispersion relations offer unique features beyond conventional settings. In particular, photonic-crystal waveguides enable tight transverse confinement of the propagating light, strong atom-photon coupling in single pass and tunable long-range atom-atom interactions. While this research area is extensively studied theoretically, experimental progress has been much more modest. This project aims at turning the emerging neutral-atom waveguide-QED paradigm into a mature field.
The primary challenge will be to develop a versatile apparatus where ensembles of cold atoms can be trapped in the proximity of slow-mode photonic-crystal waveguides, using a specific material, original structure designs and novel atom-delivery techniques. The main project objectives are then threefold:
- The demonstration of deterministic photon-photon interaction in a lossless single-pass configuration and its application to efficient quantum state engineering
- The realization of multiphoton-state engineering via atomic entangled states and subradiant and superradiant dynamics.
- The exploration of a novel bandgap physics uniquely accessible with the developed photonic-crystal platform for strong atom-atom and photon-photon interactions.
The successful realization of the project based upon the interdisciplinary interface of cold atoms and nanoscale waveguides could elevate this approach to a new route for strongly interacting photons and atoms, with unique possibilities for integrated quantum technologies, quantum non-linear optics as well as for many-body quantum physics.