Our vision is to demonstrate that room-temperature quantum interference effects, measured recently in single molecules, can be exploited in massively-parallel arrays of molecules and used to design ultra-thin-film thermoelectric d...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
UPTEG
Unconventional Principles of ThermoElectric Generation
1M€
Cerrado
PID2020-114880GB-I00
TRANSPORTE DE CALOR Y TERMOELECTRICIDAD EN CONTACTOS MOLECUL...
198K€
Cerrado
HEATTRONICS
Mesoscopic heattronics thermal and nonequilibrium effects a...
1M€
Cerrado
FIS2012-36673-C03-01
DISPOSITIVOS Y DINAMICA CUANTICAS: FUNDAMENTOS Y APLICACIONE...
185K€
Cerrado
TOPHONICALS
TOPological pHONonics In Crystalline materiALS
161K€
Cerrado
PRE2021-099352
TRANSPORTE DE CALOR Y TERMOELECTRICIDAD EN CONTACTOS MOLECUL...
101K€
Cerrado
Información proyecto QuIET
Duración del proyecto: 59 meses
Fecha Inicio: 2017-08-30
Fecha Fin: 2022-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Our vision is to demonstrate that room-temperature quantum interference effects, measured recently in single molecules, can be exploited in massively-parallel arrays of molecules and used to design ultra-thin-film thermoelectric devices with unprecedented ability to convert waste heat to electricity using the Seebeck effect and to cool at the nanoscale via the Peltier effect.
Although the dream of high-performance thermoelectric devices has been discussed for many years, evidence of the room-temperature quantum interference effects needed to realise this dream was achieved experimentally only recently. Building on these indirect demonstrations of quantum interference in single molecules using non-scalable set ups, we anticipate that the next breakthrough will be the implementation of QI functionality these intechnologically-relevant platforms.
We shall design molecules with built-in quantum interference functionality, which can be used to engineer the properties of ultra-thin molecular films. Molecules will be designed with robust anchors to metallic and carbon-based nano-gap electrodes, which enhance electron transport and eliminate unwanted phonons.This contacting strategy is scalable from a single junction, with the potential to be replicated billions of times on a single substrate. The ability to exploit quantum interference at room temperature will enable new thermoelectric materials and devices with the ability to scavenge energy with unprecedented efficiency.
QuIET is a highly interdisciplinary project that brings together internationally leading scientists from four different countries with proven expertise on synthesis, transport measurements and theoretical modelling.