Mesoscopic heattronics thermal and nonequilibrium effects and fluctuations in n...
Mesoscopic heattronics thermal and nonequilibrium effects and fluctuations in nanoelectronics
Few systems in nature are entirely in equilibrium. Out of equilibrium, there are heat currents, and different degrees of freedom or parts of studied systems may be described by entirely different temperatures if the concept of tem...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QuoMoDys
Quantum Thermodynamics of Many Body Driven Systems
197K€
Cerrado
QFluctTrans
Thermodynamics of Quantum Transport
170K€
Cerrado
OMNES
Open Many body Non Equilibrium Systems
2M€
Cerrado
NSECPROBE
Probing quantum fluctuations of single electronic channels i...
2M€
Cerrado
2MODEACHIP
Interacting two component quantum gases in micro magnetic tr...
161K€
Cerrado
Información proyecto HEATTRONICS
Líder del proyecto
JYVASKYLAN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Few systems in nature are entirely in equilibrium. Out of equilibrium, there are heat currents, and different degrees of freedom or parts of studied systems may be described by entirely different temperatures if the concept of temperature is at all well defined. In this project we will study the emergence of the subsystem temperatures in different types of small electronic systems, and the physical phenomena associated with those temperatures. Our emphasis is on the mesoscopic effects, residing between the microscopic world of individual atoms and electrons, and the macroscopic everyday world. In particular, we will research thermometry methods, different types of relaxation, magnitudes of fluctuations and effects at high frequencies. We will explore these effects in a wide variety of systems: normal metals and superconductors, carbon nanostructures, nanoelectromechanical and spintronic systems. Besides contributing to the understanding of the fundamental properties of electronic systems, our studies are directly relevant for the development of thermal sensors and electron refrigerators. The improved understanding of the thermal phenomena will also benefit the study of almost any type of a nonlinear phenomenon in electronics, for example the research of solid-state realizations of quantum computing or the race towards quantum limited mass and force detection.