Quantum Field Theory (QFT) has become a universal framework in physics to study systems with infinite number of degrees of freedom.
It has also had in the past significant interaction with Probability starting with Constructive Q...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2014-57387-C3-3-P
GRAVITACION Y TEORIA DE CAMPOS: CUANTIZACION, SIMETRIA Y MEC...
51K€
Cerrado
GAUGEGRAVITYMUNICH
Non Perturbative Physics at Finite Temperature Field Theory...
217K€
Cerrado
TcCFT
Tools to Carve out Conformal Field Theories
241K€
Cerrado
SPDE
Stochastic PDEs and Renormalisation
1M€
Cerrado
FUNREN
Functional Renormalization from quantum gravity and dark e...
2M€
Cerrado
LCFA
Logarithmically Correlated Fields and their Applications
100K€
Cerrado
Información proyecto QFPROBA
Duración del proyecto: 83 meses
Fecha Inicio: 2017-04-21
Fecha Fin: 2024-03-31
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum Field Theory (QFT) has become a universal framework in physics to study systems with infinite number of degrees of freedom.
It has also had in the past significant interaction with Probability starting with Constructive QFT and rigorous statistical mechanics. The goal of this proposal is to bring QFT methods to probabilistic problems and new ideas from Probability to QFT. It concentrates on two concrete topics:
(1) Renormalization Group study of rough Stochastic Partial Differential Equations, both their path wise solutions and their space-time correlations and stationary states. These equations are ubiquitous in non-equilibrium physics and they are mathematically challenging.
(2) The use of Multiplicative Chaos theory in the rigorous construction and study of the Liouville Conformal Field Theory. Liouville theory is one of the most studied Conformal Field Theories in physics due to its connection to scaling limits of random surfaces and string theory. It has many mathematically puzzling features and its rigorous study is now possible.
Although the physical applications of these theories are far apart on the level of mathematical methods they have a common unity based on renormalization theory that I want to utilize. I think time is ripe for a new fruitful interaction between QFT and Probability.