Quantitative HYpoxia imaging for charged ParticlE Radiation treatment guidance:...
Quantitative HYpoxia imaging for charged ParticlE Radiation treatment guidance: an improved strategy for Aggressive brain Cancers Treatment
Glioblastoma and skull base chordoma are two of the most aggressive types of brain cancers and have an extremely poor prognosis, with most tumours recurring within months of surgical and chemoradiation treatments. Recurrence is ca...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIN2013-43457-R
CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIAN...
80K€
Cerrado
PLEC2022-009476
Advanced dosimetry for novel radiotherapy approaches in brai...
307K€
Cerrado
PDC2022-133383-I00
PLATAFORMA POTENCIADA POR IA PARA EL DIAGNOSTICO DE SUBTIPOS...
129K€
Cerrado
PID2021-128984OB-I00
OPTIMIZACION DE LA PRESCIPCION DE DOSIS Y LIMITES DE DOSIS-V...
48K€
Cerrado
MTM2012-31073
ONCOLOGIA MATEMATICA: MODELADO, ANALISIS, SIMULACION Y APLIC...
56K€
Cerrado
TED2021-130081B-C21
A COMPREHENSIVE COMPUTER-AIDED DIGANOSIS (CAD) SYSTEM BASED...
193K€
Cerrado
Información proyecto HYPERACT
Duración del proyecto: 40 meses
Fecha Inicio: 2023-04-27
Fecha Fin: 2026-08-31
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
189K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Glioblastoma and skull base chordoma are two of the most aggressive types of brain cancers and have an extremely poor prognosis, with most tumours recurring within months of surgical and chemoradiation treatments. Recurrence is caused by tumour heterogeneity, as regions of the tumour with different biological properties respond differently to treatment. Tumour hypoxia (low oxygenation) is the leading cause of resistance to radiotherapy in heterogeneous cancers and is linked to poor patient prognosis. Effectively counteracting tumour hypoxia requires delivering higher doses of radiation selectively to hypoxic tumour regions. This is hard to achieve with conventional radiation treatment, where a uniform moderate radiation dose is delivered to the entire tumour target and dose-escalation strategies are limited by toxicity constraints established to limit damage to important surrounding brain structures. Standard radiotherapy plans do not incorporate any measure of tumour hypoxia, due to limitations in imaging techniques currently used for planning. The work proposed in this fellowship aims to improve radiation treatment for heterogeneous cancers by combining quantitative MRI/PET imaging, to non-invasively characterise regions of tumour hypoxia, and carbon ions radiotherapy, to deliver higher doses of radiation to those regions, whilst sparing surrounding healthy tissue. This strategy will deliver a more effective radiation dose distribution, providing an opportunity to improve local tumour control and patients’ survival outcomes and quality of life.