Innovating Works

DENOPHECK

Financiado
Purposing de novo protein scaffolds for the Heck reaction
The overall aim of this fellowship is to develop an enzymes that catalyses the Heck reaction using de novo proteins. We now live in an age where the consequences of the emissions of greenhouse gases are having observable, detrim... The overall aim of this fellowship is to develop an enzymes that catalyses the Heck reaction using de novo proteins. We now live in an age where the consequences of the emissions of greenhouse gases are having observable, detrimental effects on our planet’s ecosystem. Therefore, the need to develop non-toxic, cleaner and lower energy reactions is essential. Palladium(0)-catalysed cross-coupling reactions are a powerful method for generating carbon-carbon and carbon-heteroatom bonds, leading to their extensive use in academia and industry. Among all cross-coupling reactions, it can be argued that the Heck reaction is one of the greenest because the reagents are not prefunctionalised with metals, boron or silicon. Furthermore, it has been demonstrated that the Heck reaction can be performed in water, although truly catalytic examples to date require temperatures up to 140 °C and often more reactive and expensive aryl bromide and aryl iodide reagents. De novo protein design, the selection of an amino-acid sequence that will fold to a desired protein structure, is a newly established field. Successful designs have furnished a diverse range of protein structures. In contrast to most natural proteins, de novo proteins are well understood, have high thermal stability and are characterised to atomic detail. Dr Rhys, under the supervision of Prof Höcker & Prof Weber, proposes to purpose a range of de novo proteins to bind artificial co-factors to develop truly de novo Heckase enzymes. Functional enzymes will be optimised using well-established rational design and directed-evolution techniques. The development of an optimised Heckase could overcome existing challenges to produce an ambient temperature, stereoselective, water-soluble Heck catalyst. ver más
31/08/2022
163K€
Duración del proyecto: 29 meses Fecha Inicio: 2020-03-04
Fecha Fin: 2022-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2022-08-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 163K€
Líder del proyecto
UNIVERSITAT BAYREUTH No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5