PRINCIPLES OF AXIAL POLARITY DRIVEN VASCULAR PATTERNING
The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malf...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2015-64136-R
MECHANOTRANSDUCTION AND OXIDATIVE STRESS IN VASCULAR SMOOTH...
121K€
Cerrado
SAF2013-43302-R
¿ES EL ESTADO FUNCIONAL DE LAS CELULAS ENDOTELIALES MICROVAS...
194K€
Cerrado
EIN2019-103298
CODIFICACION DE LOS TEJIDOS CARDIOVASCULARES PARA COMPRENDER...
5K€
Cerrado
BFU2008-00212
DESARROLLO DE LA VASCULATURA CORONARIA EN PEZ CEBRA
121K€
Cerrado
FJC2021-048123-I
Deepening in the pathophysiology of the endothelial damage i...
65K€
Cerrado
MAT2013-50036-EXP
INGENIERIA DE VASOS CELULARES EN SUPERFICIE UTILIZANDO BIOIN...
63K€
Cerrado
Información proyecto AXIAL.EC
Duración del proyecto: 72 meses
Fecha Inicio: 2016-02-23
Fecha Fin: 2022-02-28
Descripción del proyecto
The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.