Prime editing to Repair Inherited Metabolic Errors: in vivo gene correction for...
Prime editing to Repair Inherited Metabolic Errors: in vivo gene correction for human genetic disease
Treatment options are insufficient for the majority of genetic metabolic diseases. Methylmalonic acidemia (MMA) is one such severe metabolic disease. With current therapeutic strategies, patients still develop metabolic decompensa...
ver más
Descripción del proyecto
Treatment options are insufficient for the majority of genetic metabolic diseases. Methylmalonic acidemia (MMA) is one such severe metabolic disease. With current therapeutic strategies, patients still develop metabolic decompensations, brain damage, kidney failure, and have a lifelong risk to acutely become blind. Repair of the genetic cause of disease would revolutionize outcomes for these patients, especially with increasing detection in neonatal screening programs. This makes it possible to correct the cause of disease prior to the onset of irreversible damage. However, efficiency, safety, versatility and delivery of precise gene editing is not yet sufficient for in vivo gene-correction therapies.
The aim of this proposal is to develop an in vivo gene-editing therapy program for patients with metabolic diseases targeting the liver, where most metabolic genes are highly expressed. As a proof-of-principle, I will repair genetic causes of MMA, validate this in personalized cells and mouse models, and lay the groundwork for human trials.
To this end, I will:
(1) Generate a clinically applicable gene-editing technique. I recently demonstrated that the novel gene-editing technique prime editing could accurately correct different mutations in patient-derived organoids. Using an innovative reporter and patient-derived organoids, I will develop prime editing into an efficient and safe strategy that can correct >90% of patient mutations.
(2) Create a system for in vivo delivery of the prime-editing machinery with lipid nanoparticles to target the liver, using patient-derived liver organoids and an existing MMA mouse model.
(3) Develop a roadmap to tailor gene-correction therapies to individual patients, using the reporter with the patient mutation and mutational context, patient-derived organoids, and a mutation-specific animal model for a common MMA mutation.
This foundational work will lay the basis for broad clinical application of precise gene-editing therapies.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.