Predicting neuropathic pain episodes in spinal cord injury patients through port...
Predicting neuropathic pain episodes in spinal cord injury patients through portable EEG and machine learning
Neuropathic pain (NP) is a common symptom arising as a direct consequence of a lesion or disease affecting the somatosensory system. The traditional approach to manage NP patients is to initiate treatment with conservative pharmac...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PSI2015-70966-P
DESARROLLO DE UN SISTEMA DE NEUROFEEDBACK PORTABLE PARA EL T...
94K€
Cerrado
SpinRec
An easy to use garment for the non invasive recording of the...
150K€
Cerrado
PID2019-107986RB-I00
CEREBRO Y DOLOR: CARACTERIZAR LOS MECANISMOS CENTRALES DEL D...
133K€
Cerrado
PredictingPain
Deconstructing pain with predictive models from neural arch...
1M€
Cerrado
PAINLESS
Pain relief in palliative care of cancer using home based ne...
6M€
Cerrado
BID
Brains in Dialogue Brain Science at the service of European...
556K€
Cerrado
Información proyecto Pain_App
Duración del proyecto: 24 meses
Fecha Inicio: 2021-03-30
Fecha Fin: 2023-03-31
Líder del proyecto
MALMO UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
204K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Neuropathic pain (NP) is a common symptom arising as a direct consequence of a lesion or disease affecting the somatosensory system. The traditional approach to manage NP patients is to initiate treatment with conservative pharmacological therapy before interventional strategies. However, first-line drug treatments have shown modest efficacy with less than 50% of pain relief. Since NP is present in ~70% of patients with spinal cord injury (SCI), people with this pathology represent a reliable population to study NP. Interestingly, previous studies have shown a clear correlation between NP and changes in electroencephalography (EEG), which is a good indicator of the state of the central nervous system. Hence, I hypothesise that NP episodes in SCI patients can be predicted based on the classification and identification of features extracted from EEG recordings in resting state and during an imaginary motor task. In recent years, digital health technology has emerged as a useful tool to improve data management strategy under the full control of the patient. In this project, I will employ state-of-the-art digital health technology (a smartphone app and a portable EEG) to collect data from SCI patients daily for one month, including pain self-assessment scales and physiological indicators. I will set up a digital-health-based study using a software platform already established by the host institution. The collection of these data will allow me to develop a personalised model to predict the onset of NP episodes using machine learning techniques. Predicting the occurrence of NP episodes will increase the medication efficacy, which in turn will prevent an aggressive development of pain events while minimising the side effects produced by excessive drug doses. The expected results of this project will remarkably improve the quality of life of SCI patients with NP.