Precise X-Y-Z Readout with a micro-Magnetometer Inverted-pyramid Design
"Chip-scale magnetometers come in several flavors, the most common being silicon Hall-effect plates that integrate easily with electronics. However, these devices only detect 1D fields, are asymmetric between X-Y and Z directions,...
ver más
Descripción del proyecto
"Chip-scale magnetometers come in several flavors, the most common being silicon Hall-effect plates that integrate easily with electronics. However, these devices only detect 1D fields, are asymmetric between X-Y and Z directions, and cannot work in extreme temperatures. My goal is to leverage my expertise in micromachining and wide-bandgap semiconductor Hall-plates to realize magnetometers with a unique ""3D"" microstructure that uses 10% of the space of existing ""3x1D"" sensors, and is 3-10x more accurate. This enables new products for 3D navigation in autonomous microsystems such as biomedical implants, power monitoring, and nanosatellites.
This proposal will involve the development of the inverted pyramid device through crystallographic etching of <100> CMOS silicon to expose the <111> crystal plane at 54.7°. This enables higher angular accuracy and avoids fabrication misalignment or packaging errors. The <111> also supports direct GaN and other 3D Material integration with CMOS chips. In parallel, the host group, the Electronics Instrumentation(EI) laboratory at TU Delft, will develop the CMOS integrated circuit for front-end amplification and switching scheme of the sensor to detect all three components of the field from a singular device. The EI lab is top-ranked in circuits design and complements my sensor development activities seamlessly.
The final year of the project will focus on testing these chips packaged together and development of a integrated single chip with both sensor and circuit to reveal improved performance with the use of graphene as the device layer. This project will open up future work with (ultra) wide-bandgap material integration using GaN and/or Diamond to enable extreme-environment navigation sensors with exotic applications in high temperature environments.
The project will improve my career prospects as a tenure-track professor with training in circuits, teaching and tenure-track professional development at TU Delft."
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.