"The field of attosecond science is now entering the second decade of its existence, with good prospects for breakthroughs in a number of areas. We want to take the next step in this development: from mastering the generation and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QPAP
Quantum Physics with Attosecond Pulses
3M€
Cerrado
FIS2017-92382-EXP
CAPTURA DE LA DINAMICA ELECTRONICA CORRELACIONADA USANDO PUL...
36K€
Cerrado
ATTOFEL
Ultrafast Dynamics using ATTosecond and XUV Free Electron La...
4M€
Cerrado
AEDMOS
Attosecond Electron Dynamics in MOlecular Systems
2M€
Cerrado
NEARFIELDATTO
Attosecond physics at nanoscale metal tips strong field ph...
2M€
Cerrado
QUANTUMSUBCYCLE
Ultrafast quantum physics on the sub cycle time scale
1M€
Cerrado
Información proyecto PALP
Líder del proyecto
LUNDS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The field of attosecond science is now entering the second decade of its existence, with good prospects for breakthroughs in a number of areas. We want to take the next step in this development: from mastering the generation and control of attosecond pulses to breaking new marks starting with the simplest systems, atoms. The aim of the present application is to advance the emerging new research field Ultrafast Atomic Physics, where one- or two-electron wave packets are created by absorption of attosecond pulse(s) and analyzed or controlled by another short pulse. Our project can be divided into three parts:
1. Interferometric measurements using tunable attosecond pulses
How long time does it take for an electron to escape its potential?
We will measure photoemission time delays for several atomic systems, using a tunable attosecond pulse source. This type of measurements will be extended to multiple ionization and excitation processes, using coincidence measurements to disentangle the different channels and infrared ionization for analysis.
2. XUV pump/XUV probe experiments using intense attosecond pulses
How long does it take for an atom to become an ion once a hole has been created?
Using intense attosecond pulses and the possibility to do XUV pump/ XUV probe experiments, we will study the transition between nonsequential double ionization, where the photons are absorbed simultaneously and all electrons emitted at the same time and sequential ionization where electrons are emitted one at a time.
3. ""Complete"" attosecond experiments using high-repetition rate attosecond pulses
We foresee a paradigm shift in attosecond science with the new high repetition rate systems based on optical parametric chirped pulse amplification which are coming to age. We want to combine coincidence measurement with angular detection, allowing us to characterize (two-particle) electronic wave packets both in time and in momentum and to study their quantum-mechanical properties."