Ultrafast Dynamics using ATTosecond and XUV Free Electron Laser Sources
Worldwide there is great excitement about two new ultrafast XUV/x-ray sources that are presently coming available. Attosecond XUV pulses by high-harmonic generation (HHG) will now allow for the first time to make movies of ultrafa...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AXSIS
Frontiers in Attosecond X ray Science Imaging and Spectrosc...
14M€
Cerrado
RYC-2014-16706
Time-resolved electron and nuclear dynamics through femto- a...
309K€
Cerrado
AEDMOS
Attosecond Electron Dynamics in MOlecular Systems
2M€
Cerrado
ATTOTREND
Femto and attosecond imaging of molecular multiple ionizati...
100K€
Cerrado
MEDEA
Molecular Electron Dynamics investigated by IntensE Fields a...
4M€
Cerrado
MIDAS
Multidimensional Spectroscopy at the Attosecond frontier
1M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Worldwide there is great excitement about two new ultrafast XUV/x-ray sources that are presently coming available. Attosecond XUV pulses by high-harmonic generation (HHG) will now allow for the first time to make movies of ultrafast electron motion, and thereby to investigate photo-chemical processes beyond the Born-Oppenheimer limit. At the same time, XUV/x-ray Free Electron Lasers (FELs) based on self-amplification of spontaneous emission (SASE) of relativistic electrons moving through an undulator structure will allow for the first time to track structural changes in (bio-)molecules using femtosecond time-resolved x-ray diffraction. In this context, the objectives of ATTOFEL are six-fold: 1) by establishing a framework for collaborative research on attosecond science, the potential is created for major breakthroughs in our understanding of the role of ultrafast electron dynamics in atomic physics, molecular physics and materials science. 2) by bringing together groups who recently have combined research in attosecond science with research efforts at the FLASH-FEL in Hamburg, an effective channel is created for knowledge transfer between the HHG/attosecond laser community and the FEL-community, which have historically been separate. 3) a generation of young scientists is trained that can shape the future of attosecond and FEL science, or that can embark on successful careers in industry. 4) the competitive advantage that European attosecond science and European XUV/x-ray FEL facilities currently have is significantly aided. 5) the competitive position of European industrial partners in the very demanding high-end ultrafast lasers market is strengthened. 6) the structuring of the international research community in this field will be consolidated, strengthened and expanded.