Computer graphics technology for realistic rendering has improved
dramatically; however, the technology to create scene models to be rendered,
e.g., for movies, has not developed at the same pace. In practice, the state
of the art...
Computer graphics technology for realistic rendering has improved
dramatically; however, the technology to create scene models to be rendered,
e.g., for movies, has not developed at the same pace. In practice, the state
of the art in model creation still requires months of complex manual design,
and this is a serious threat to progress. To attack this problem, computer
graphics and computer vision researchers jointly developed methods that
capture scene models from real world examples. Of particular importance is
the capturing of moving scenes. The pinnacle of dynamic scene capture
technology in research is marker-less performance capture. From multi-view
video, they capture dynamic surface and texture models of the real world.
Performance capture is hardly used in practice due to profound limitations:
recording is usually limited to indoor studios, controlled lighting, and
dense static camera arrays. Methods are often limited to single objects, and
reconstructed shape detail is very limited. Assumptions about materials,
reflectance, and lighting in a scene are simplistic, and we cannot easily
modify captured data.
In this project, we will pioneer a new generation of performance capture
techniques to overcome these limitations. Our methods will allow the
reconstruction of dynamic surface models of unprecedented shape detail. They
will succeed on general scenes outside of the lab and outdoors, scenes with
complex material and reflectance distributions, and scenes in which lighting
is general, uncontrolled, and unknown. They will capture dense and crowded
scenes with complex shape deformations. They will reconstruct conveniently
modifiable scene models. They will work with sparse and moving sets of
cameras, ultimately even with mobile phones. This far-reaching,
multi-disciplinary project will turn performance capture from a research
technology into a practical technology, provide groundbreaking scientific
insights, and open up revolutionary new applications.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.