Out of the blue membrane based microcavity lasers from the blue to the ultravio...
Out of the blue membrane based microcavity lasers from the blue to the ultraviolet wavelength regime
Achieving ultraviolet (UV) emission has proven to be difficult, in particular for microcavity lasers due to high optical losses and defect densities. Our group, with a world-leading position in microcavity laser research, has iden...
Achieving ultraviolet (UV) emission has proven to be difficult, in particular for microcavity lasers due to high optical losses and defect densities. Our group, with a world-leading position in microcavity laser research, has identified new possibilities to combat these challenges in both ultraviolet and blue-emitting devices. By using these breakthroughs, we aim to develop the first electrically injected blue microcavity laser with good enough performance to be useful in real-world applications and project out of the blue and into the ultraviolet to realize the very first electrically injected UV microcavity laser. Our two recent breakthroughs are:
1. The discovery of an overlooked loss mechanism in microcavities and schemes to circumvent it. Our proposed designs to circumvent this unintentional anti-guiding are being implemented worldwide and have led to a tenfold increase in optical output power in blue lasers.
2. A unique membrane technique to enable microcavity lasers with highly reflective dielectric mirrors on both sides of the cavity – a device concept previously un-realizable for UV-lasers. The method is based upon electrochemical etching of the chemically inert material AlGaN (the material of choice for UV), which enables lift-off of device membranes with smooth surfaces from the substrate and mirror-deposition on the bottom side. Our recent demonstration of the world’s first thin-film, flip-chip UV-B LED with this technique holds great promises for microcavity lasers.
These two new approaches will be combined with a focused effort to circumvent the problem of low electrical conductivity of p-doped materials. We will strengthen our capabilities by developing tunnel junctions, allowing highly conductive n-doped material to be used throughout virtually the entire laser. This will drastically reduce losses, which cause degradation within minutes in blue microcavity lasers, and might be the only solution to electrically driven UV microcavity lasers.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.