Organic Inorganic perovskite and organic semiconductor films with improved cryst...
Organic Inorganic perovskite and organic semiconductor films with improved crystal properties via reel to reel solution coating application to photovoltaics and field effect transistors
This project will develop low cost and scalable solution–based coating techniques to yield electrically tunable films with macroscopic crystalline domains of both organic–inorganic perovskite and organic semiconductors. These laye...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Crystal Solar
Duración del proyecto: 38 meses
Fecha Inicio: 2015-10-27
Fecha Fin: 2018-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project will develop low cost and scalable solution–based coating techniques to yield electrically tunable films with macroscopic crystalline domains of both organic–inorganic perovskite and organic semiconductors. These layers will be used to prepare solution processed hybrid perovskite-based photovoltaic (PV) devices surpassing 20 % solar-to-electricity power conversion efficiency, to provide a low cost and renewable energy supply. The researcher will carry out the processing and characterization of the materials at Professor Zhenan Bao's laboratory at Stanford University. Professor Bao is a world leader in using solution deposition techniques to tune the physical and electronic properties of solution-processed semiconductors for use in FETs, and is well suited to extend this approach to perovskite PV. The skills and knowledge obtained at Stanford University will be brought back to Professor Henry Snaith's laboratory at Oxford University and to Oxford Photovoltaics ltd to prepare low cost, scalable perovskite PV with enhanced macroscopic crystal properties and performance. Professor Snaith is recognized as one of the pioneers in perovskite based PV, and is thus excellently placed to guide the researcher in the development of PV with superior performance for eventual employment as large-scale energy supply. This project will form a unique union of two world leading research groups with complementary expertise. There is great potential for the transfer of skills, generation of intellectual property, and industrial involvement within the EU via the ISIS program at Oxford University, and the company Oxford Photovoltaics of which Professor Snaith is the CTO.